Resumo

Objetivo: Revisar estudos que avaliaram o uso do AU em seres humanos e seus efeitos na adiposidade e massa muscular. Métodos: A busca dos artigos foi realizada na base de dados PubMed. Foram excluídos estudos irrelevantes ao tema e experimentos com animais, sendo incluídos na revisão quatro trabalhos. Resultados e Discussão: Os estudos apontam que o AU está associado com redução da gordura corporal (via termogênese) e controle glicêmico, e que, associado ao exercício resistido pode aumentar a síntese proteica (via a sinalização da mTOR). Conclusão:  São necessários mais estudos clínicos para esclarecer a dose terapêutica, o público alvo e o efeito na perda de gordura corporal e/ou ganho de massa muscular.

Referências

Lynes MD, Tseng YH. Deciphering adipose tissue heterogeneity. Ann New York Acad Sci 2017:1-16.

Associação Brasileira para Estudo da Obesidade e Síndrome Metabólica. Diretrizes Brasileiras de Obesidade. São Paulo: ABESO; 2016.

Ministério da Saúde. Vigilância de Fatores de Risco e Proteção para Doenças Crônicas por Inquérito Telefônico. Brasília: MS; 2016.

Katashima CK, Silva VR, Gomes TL, Pichard C, Pimentel GD. Ursolic acid and mechanisms of actions on adipose and muscle tissue: a systematic review. Obes Rev 2017;18(6):700-11.

Padua TA, Abreu BS, Costa TE, Nakamura MJ, Valente LM., Henriques M, et al. Anti-inflammatory effects of methyl ursolate obtained from a chemically derived crude extract of apple peels: potential use in rheumatoid arthritis. Arch Pharm Res 2014;37(11):1487-95.

Jager S, Trojan H, Kopp T, Laszczyk MN, Scheffler A. Pentacyclic triterpene distribution in various plants – rich sources for a new group of multi-potent plant extract. Molecules 2009;(14):2016-31.

Kunkel SD, Elmore CJ, Bongers KS, Ebert SM, Fox DK, Dyle MC, et al. Ursolic acid increases skeletal muscle and brown fat and decreases diet-induced obesity, glucose intolerance and fatty liver disease. PloS One 2012;7:e39332.

Kunkel SD, Suneja M, Ebert SM, Bongers KS, Fox DK, Malmberg SE, et al. mRNA expression signatures of human skeletal muscle atrophy identify a naturKal compound that increases muscle mass. Cell Metab 13. 2011;13(6):627-38.

Gai WT. Anti-Cancer effect of Ursolic Acid Activates Apoptosis Through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer. Oncology Letters 2016;12(4):2880-85.

Chen X, Wan Y, Zhou T, Li J, Wei Y. Ursolic acid attenuates lipopolysaccharide-induced acute lung injury in a mouse model. Immunotherapy 2013;5(1):39-47.

Kim SH, Hong JH, Lee YC. Ursolic acid, a potential PPARγ agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulating IL-5, IL-13, and IL-17 in a mouse model of allergic asthma. Eur J Pharmacol 2013;701:131-43.

Souza DR, Gomides RS, Costa LA, Queiroz AC, Barros S, Ortega KC, et al. Amlodipine reduces blood pressure during dynamic resistance exercise in hypertensive patients. Scand J Med Sci Sports 2013;25(1):53-60.

Wang ZH, Hsu CC, Huang CN, Yin MC. Anti-glycative effects of oleanolic acid and ursolic. Eur J Pharmacol 2010;682(1-3):255-60.

Chu X, He X, Shi Z, Li C, Guo F, Li S, et al. Ursolic acid increases energy expenditure through enhancing free fatty acid uptake and β-oxidation via an UCP3/AMPK-dependent pathway in skeletal muscle. Mol Nutr Food Res 2015;59(8):1491–1503.

Sundaresan A, Harini R, Pugalendi KV. Ursolic acid and rosiglitazone combination alleviates metabolic syndrome in high fat diet fed C57BL/6 J mice. Gen Physiol Biophys 2012;31(3):323-33.

Yan-Xiang L. Research on the anti-obesity effect of ursolic acid with experimental hyperlipidemia mice. West China J Pharm Sci 2013;28:264-66.

Shishodia S, Majumdar S, Banerjee S, Aggarwal BB. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res 2003;63(15):4375-83.

Heymsfield SB, Adamek M, Gonzalez MC, Jia G, Thomas DM. Assessing skeletal muscle mass: historical overview and state of the art. J Cachexia Sarcopenia Muscle 2014;5(1):9-18.

Cohen S, Nathan J, Goldberg AL. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat Rev Drug Discov 2015;(14):58–74.

Egerman MA, Glass DJ. Signaling pathways controlling skeletal muscle mass. Crit Rev Biochem Mol Biol 2014;(49):59-68.

Canepari M, Pellegrino MA, D’Antona G, Bottinelli R. Skeletal muscle fibre diversity and the underlying mechanisms. Acta Physio (Oxf) 2010;199:465-76.

Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 2001;3:1014-19.

Miyazaki M, McCarthy JJ, Fedele MJ, Esser KA. Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling. J Physiol 2011;589:1831-46.

Bang HSB, Seo DYS, Chung YM, Oh KM, Park JJ, Arturo F, et al. Ursolic Acid-Induced Elevation of Serum Irisin Augments Muscle Strenght During Resistance Training in Men. Korean J Physiol Pharmacol 2014;18:441–46.

Cho YH, Lee SY, Kim CM, Kim ND, Choe S, Lee CH, et al. Effect of loquat leaf extract on muscle strengh, muscle mass, and msucle function in healthy adults: A randomized, double-blinded, and placebo-controlled trial. Evid-Based Compl Alt 2016;2016:1-9.

Ramírez-Rodríguez AM, González-Ortiz M, Martínez-Abundis E, Ortega NA. Effect of Ursolic Acid on Metabolic Syndrome, Insulin Sensitivity, and Inflammation. J Med Food 2017:1-5.

Church DD, Schwarz NA, Spillane MB, Mckinley-Barnard SK, Andre TL, Ramirez AJ, et al. L-Leucine increases skeletal muscle IGF-1 but does not differentially increase Akt/mTOR1 signaling and sérum IFG-1 compared to ursolic acid in response to resistance exercise in resistance-trained men. J Am Coll Nutr 2016;35(7):627-38

Acessar