Dados de Atividade Física em Larga Escala Revelam Desigualdade na Atividade Mundial

Por: Abby C. King, Jennifer L. Hicks, Jure Leskovec, Rok Sosič, Scott L. Delp e Tim Althoff.

Nature - 2017

Send to Kindle


Resumo

Para poder conter a pandemia global de inatividade física1, 2, 3, 4, 5, 6, 7 e os 5,3 milhões de mortes por ano2 associados, precisamos entender os princípios básicos que regem a atividade física. No entanto, há uma falta de medidas em larga escala de padrões de atividade física em populações de vida livre em todo o mundo1, 6. Aqui, nós utilizamos o uso amplo de smartphones com acelerometria interna para medir a atividade física na escala global. Estudamos um conjunto de dados consistindo de 68 milhões de dias de atividade física para 717.527 pessoas, dando-nos uma janela em atividade em 111 países em todo o mundo. Encontramos desigualdade na forma como a actividade é distribuída nos países e que esta desigualdade é um melhor preditor da prevalência da obesidade na população do que o volume médio de atividade. A redução da atividade nas mulheres contribui para uma grande parte da desigualdade de atividade observada. Os aspectos do ambiente construído, como a capacidade de caminhada de uma cidade, estão associados a uma menor diferença de gênero na atividade e menor desigualdade na atividade. Em cidades mais transitáveis, a atividade é maior ao longo do dia e ao longo da semana, em todos os grupos de idade, gênero e índice de massa corporal (IMC), com os maiores aumentos de atividade encontrados para as mulheres. Nossas descobertas têm implicações para a política global de saúde pública e o planejamento urbano e destacam o papel da desigualdade na atividade e do meio ambiente construído na melhoria da atividade física e da saúde.

REFERÊNCIAS

Hallal, P. C. et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380, 247–257 (2012)

Lee, I.-M. et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380, 219–229(2012)

UN Secretary General. Prevention and control of non-communicable diseases. http://www.who.int/nmh/publications/2011-report-of-SG-to-UNGA.pdf (Regional Office for South-East Asia, World Health Organisation, 2011); accessed 21 April 2016

World Health Organization (WHO). Global Recommendations On Physical Activity For Health. http://www.who.int/dietphysicalactivity/publications/9789241599979/en/ (WHO, 2010); accessed 21 April 2016

Kohl, H. W. et al. The pandemic of physical inactivity: global action for public health. Lancet380, 294–305 (2012)

Tudor-Locke, C., Hatano, Y., Pangrazi, R. P. & Kang, M. Revisiting “how many steps are enough?”. Med. Sci. Sports Exerc. 40, S537–S543 (2008)

Sallis, J. F. et al. Progress in physical activity over the Olympic quadrennium. Lancet 388, 1325–1336 (2016)

Bauman, A. E. et al. Correlates of physical activity: why are some people physically active and others not? Lancet 380, 258–271 (2012)

Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Report. https://health.gov/paguidelines/report/pdf/CommitteeReport.pdf (US Department of Health and Human Services, 2008); accessed 21 April 2016

Chokshi, D. A. & Farley, T. A. Changing behaviors to prevent noncommunicable diseases. Science 345, 1243–1244 (2014)

Sallis, J. F. et al. Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. Lancet 387, 2207–2217 (2016)

Servick, K. Mind the phone. Science 350, 1306–1309 (2015)

Reis, R. S. et al. Scaling up physical activity interventions worldwide: stepping up to larger and smarter approaches to get people moving. Lancet 388, 1337–1348 (2016)

Prince, S. A. et al. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int. J. Behav. Nutr. Phys. Act. 5, 56 (2008)

Van Dyck, D. et al. International study of objectively measured physical activity and sedentary time with body mass index and obesity: IPEN adult study. Int. J. Obes. 39, 199–207 (2015)

Walch, O. J., Cochran, A. & Forger, D. B. A global quantification of “normal” sleep schedules using smartphone data. Sci. Adv. 2, e1501705 (2016)

González, M. C., Hidalgo, C. A. & Barabási, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008); addendum 458, 238 (2009)

Golder, S. A. & Macy, M. W. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures. Science 333, 1878–1881 (2011)

Wesolowski, A. et al. Quantifying the impact of human mobility on malaria. Science 338, 267–270 (2012)

Blumenstock, J., Cadamuro, G. & On, R. Predicting poverty and wealth from mobile phone metadata. Science 350, 1073–1076 (2015)

Anthes, E. Mental health: there’s an app for that. Nature 532, 20–23 (2016)

Case, M. A., Burwick, H. A., Volpp, K. G. & Patel, M. S. Accuracy of smartphone applications and wearable devices for tracking physical activity data. J. Am. Med. Assoc.313, 625–626 (2015)

Hekler, E. B. et al. Validation of physical activity tracking via android smartphones compared to ActiGraph accelerometer: laboratory-based and free-living validation studies. JMIR mHealth uHealth 3, e36 (2015)

Atkinson, A. B. On the measurement of inequality. J. Econ. Theory 2, 244–263 (1970)

Allison, P. D. Measures of inequality. Am. Sociol. Rev. 43, 865–880 (1978)

Brown, W. J., Mielke, G. I. & Kolbe-Alexander, T. L. Gender equality in sport for improved public health. Lancet 388, 1257–1258 (2016)

Wagstaff, A. & Van Doorslaer, E. Income inequality and health: what does the literature tell us? Annu. Rev. Public Health 21, 543–567 (2000)

Lynch, J. W., Smith, G. D., Kaplan, G. A. & House, J. S. Income inequality and mortality: importance to health of individual income, psychosocial environment, or material conditions. Br. Med. J. 320, 1200 (2000)
Centers for Disease Control and Prevention (CDC) Vital Signs: More People Walk to Better Health. http://www.cdc.gov/vitalsigns/walking/ (2012); accessed 3 November 2016

Stuart, E. A. Matching methods for causal inference: a review and a look forward. Stat. Sci.25, 1–21 (2010)

Bassett, D. R., Wyatt, H. R., Thompson, H., Peters, J. C. & Hill, J. O. Pedometer-measured physical activity and health behaviors in U.S. adults. Med. Sci. Sports Exerc. 42, 1819–1825 (2010)

Troiano, R. P. et al. Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 40, 181–188 (2008)

Tudor-Locke, C., Johnson, W. D. & Katzmarzyk, P. T. Accelerometer-determined steps per day in US adults. Med. Sci. Sports Exerc. 41, 1384–1391 (2009)

World Health Organization. Prevalence of Insufficient Physical Activity among Adults: Data by Country. http://apps.who.int/gho/data/node.main.A893?lang=en (Global Health Observatory data repository, WHO, accessed 19 May 2016)

World Health Organization. Obesity (Body Mass Index ≥ 30) (Age-Standardized Estimate): Estimates by Country. http://apps.who.int/gho/data/node.main.A900A?lang=en. (Global Health Observatory data repository, WHO, accessed 19 May 2016)

Basner, M. et al. American time use survey: sleep time and its relationship to waking activities. Sleep 30, 1085–1095 (2007)

De Maio, F. G. Income inequality measures. J. Epidemiol. Community Health 61, 849–852(2007)

Kawachi, I. & Kennedy, B. P. The relationship of income inequality to mortality: does the choice of indicator matter? Soc. Sci. Med. 45, 1121–1127 (1997)

Steiger, J. H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 87, 245–251 (1980)

CIA World Factbook. Field Listing: Median Age https://www.cia.gov/library/publications/the-world-factbook/fields/2177.html (CIA, accessed 22 June 2017)

World Bank. World Bank Country and Lending Groups. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups (World Bank, accessed 5 October 2016)

World Bank. Population, Female (% of Total). http://data.worldbank.org/indicator/SP.POP.TOTL.FE.ZS (World Bank, accessed 10 May 2016)

Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994)

Walk Score. https://www.walkscore.com/cities-and-neighborhoods/ (Walk Score, accessed 17 May 2016)

Duncan, D. T., Aldstadt, J., Whalen, J., Melly, S. J. & Gortmaker, S. L. Validation of Walk Score for estimating neighborhood walkability: an analysis of four US metropolitan areas. Int. J. Environ. Res. Public Health 8, 4160–4179 (2011)

United States Census Bureau (USCB). American Community Survey. http://www.census.gov/programs-surveys/acs/ (USCB, accessed 5 October 2016)

United States Census Bureau (USCB). Bay Area Census. 2010 Census and American Community Survey 2006-2010. http://www.bayareacensus.ca.gov/cities/cities.htm(accessed 5 July 2016)

Endereço: https://www.nature.com/nature/journal/vaop/ncurrent/full/nature23018.html

Comentários


:-)





© 1996-2019 Centro Esportivo Virtual - CEV.
O material veiculado neste site poderá ser livremente distribuído para fins não comerciais, segundo os termos da licença da Creative Commons.