É Melhor Servir o Exercício com o Estômago Vazio?

Por: Gareth A. Wallis e Javier T. Gonzalez.
Send to Kindle


Resumo

O objetivo deste artigo de revisão é avaliar o impacto da realização de exercícios aeróbicos no estado de jejum. Alimentado durante a noite, no contexto de otimização dos benefícios à saúde da atividade física regular. A realização de um único exercício aeróbico no estado de jejum v. Durante a noite pode modular de maneira diferencial os aspectos do metabolismo e dos comportamentos do balanço energético. Isso inclui, entre outros, aumento da utilização de gordura como fonte de combustível, perfis lipídicos plasmáticos aprimorados, ativação aprimorada de vias de sinalização molecular relacionadas ao metabolismo do combustível no músculo esquelético e no tecido adiposo e reduções na ingestão de energia ao longo de uma dia. O impacto de uma única sessão de exercício de jejum v. Durante o dia em jejum no controle glicêmico de curto prazo é variável, sendo afetado pelas condições experimentais, o período de medição e possivelmente a população estudada. A resposta de saúde à realização de exercícios de jejum noturno versus estado alimentado por um período sustentado na forma de treinamento físico é menos clara, devido a um número limitado de estudos. A partir da literatura existente, há evidências de que o exercício em jejum noturno em homens jovens e saudáveis ​​pode melhorar as adaptações induzidas pelo treinamento no perfil metabólico do músculo esquelético e mitigar as consequências negativas do consumo excessivo de energia a curto prazo na tolerância à glicose em comparação com o exercício em o estado alimentado. No entanto, mais estudos de longo prazo são necessários, particularmente em populações em risco ou vivendo com doença cardio-metabólica, para elucidar se o status de alimentação antes do exercício modula os comportamentos de metabolismo ou balanço energético a uma extensão que possa impactar os benefícios de saúde ou terapêuticos. exercício. (Google Trad)

References

1.Garber, CE, Blissmer, B, Deschenes, MR, et al. (2011) Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exercise 43, 1334–1359.CrossRef | Google Scholar | PubMed
2.Colberg, SR, Sigal, RJ, Yardley, JE et al. (2016) Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care 39, 2065–2079.CrossRef | Google Scholar | PubMed
3.Ross, R, Blair, SN, Arena, R et al. (2016) Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation 134, e653–e699.CrossRef | Google Scholar | PubMed
4.Boulé, NG, Weisnagel, SJ, Lakka, TA et al. (2005) Effects of exercise training on glucose homeostasis. The HERITAGE Family Study. Diabetes Care 28, 108–114.CrossRef | Google Scholar | PubMed
5.King, NA, Hopkins, M, Caudwell, P et al. (2007) Individual variability following 12 weeks of supervised exercise: identification and characterization of compensation for exercise-induced weight loss. Int J Obes 32, 177.CrossRef | Google Scholar | PubMed
6.Hawley John, A, Maughan Ronald, J & Hargreaves, M (2015) Exercise metabolism: historical perspective. Cell Metab 22, 12–17.CrossRef | Google Scholar
7.Bartlett, JD, Hawley, JA & Morton, JP (2015) Carbohydrate availability and exercise training adaptation: too much of a good thing? Eur J Sport Sci 15, 3–12.CrossRef | Google Scholar
8.Burke, LM, Hawley, JA, Wong, SHS et al. (2011) Carbohydrates for training and competition. J Sports Sci 29, S17–S27.CrossRef | Google Scholar | PubMed
9.Hansen, D, De Strijcker, D & Calders, P (2017) Impact of endurance exercise training in the fasted state on muscle biochemistry and metabolism in healthy subjects: can these effects be of particular clinical benefit to type 2 diabetes mellitus and insulin-resistant patients? Sports Med 47, 415–428.CrossRef | Google Scholar | PubMed
10.Haxhi, J, Scotto di Palumbo, A & Sacchetti, M (2013) Exercising for metabolic control: is timing important? Ann Nutr Metab 62, 14–25.CrossRef | Google Scholar | PubMed
11.Genser, D (2008) Food and drug interaction: consequences for the nutrition/health status. Ann Nutr Metab 52(suppl 1), 29–32.CrossRef | Google Scholar | PubMed
12.Vieira, AF, Costa, RR, Macedo, RCO et al. (2016) Effects of aerobic exercise performed in fasted v. fed state on fat and carbohydrate metabolism in adults: a systematic review and meta-analysis. Br J Nutr 116, 1153–1164.CrossRef | Google Scholar | PubMed
13.Coyle, EF, Jeukendrup, AE, Wagenmakers, AJ et al. (1997) Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am J Physiol Endocrinol Metab 273, E268–E275.CrossRef | Google Scholar | PubMed
14.De Bock, K, Richter Erik, A, Russell Aaron, P et al. (2005) Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans. J Physiol 564, 649–660.CrossRef | Google Scholar | PubMed
15.Bilet, L, Brouwers, B, van Ewijk, PA et al. (2015) Acute exercise does not decrease liver fat in men with overweight or NAFLD. Sci Rep 5, 9709.CrossRef | Google Scholar | PubMed
16.Melanson, EL, Gozansky, WS, Barry, DW et al. (2009) When energy balance is maintained, exercise does not induce negative fat balance in lean sedentary, obese sedentary, or lean endurance-trained individuals. J Appl Physiol 107, 1847–1856.CrossRef | Google Scholar | PubMed
17.Iwayama, K, Kurihara, R, Nabekura, Y et al. (2015) Exercise increases 24-h fat oxidation only when it is performed before breakfast. EBioMedicine 2, 2003–2009.CrossRef | Google Scholar | PubMed
18.Iwayama, K, Kawabuchi, R, Nabekura, Y et al. (2017) Exercise before breakfast increases 24-h fat oxidation in female subjects. PLoS ONE 12, e0180472.CrossRef | Google Scholar | PubMed
19.Robinson, SL, Hattersley, J, Frost, GS et al. (2015) Maximal fat oxidation during exercise is positively associated with 24-hour fat oxidation and insulin sensitivity in young, healthy men. J Appl Physiol 118, 1415–1422.CrossRef | Google Scholar | PubMed
20.Zurlo, F, Lillioja, S, Puente, AE-D et al. (1990) Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol Endocrinol Metab 259, E650–E657.CrossRef | Google Scholar | PubMed
21.Enevoldsen, LH, Simonsen, L, Macdonald, IA et al. (2004) The combined effects of exercise and food intake on adipose tissue and splanchnic metabolism. J Physiol 561, 871–882.CrossRef | Google Scholar | PubMed
22.Farah, NMF & Gill, JMR (2012) Effects of exercise before or after meal ingestion on fat balance and postprandial metabolism in overweight men. Br J Nutr 109, 2297–2307.CrossRef | Google Scholar | PubMed
23.Chacko, E (2017) A time for exercise: the exercise window. J Appl Physiol 122, 206–209.CrossRef | Google Scholar | PubMed
24.Poirier, P, Tremblay, A, Catellier, C et al. (2000) Impact of time interval from the last meal on glucose response to exercise in subjects with type 2 diabetes 1. J Clin Endocrinol Metab 85, 2860–2864.Google Scholar
25.Gonzalez, JT (2014) Paradoxical second-meal phenomenon in the acute postexercise period. Nutrition 30, 961–967.CrossRef | Google Scholar | PubMed
26.Nygaard, H, Rønnestad, BR, Hammarström, D et al. (2017) Effects of exercise in the fasted and postprandial state on interstitial glucose in hyperglycemic individuals. J Sports Sci Med 16, 254–263.Google Scholar | PubMed
27.Gonzalez, JT, Veasey, RC, Rumbold, PLS et al. (2013) Breakfast and exercise contingently affect postprandial metabolism and energy balance in physically active males. Br J Nutr 110, 721–732.CrossRef | Google Scholar | PubMed
28.Jean-Pierre, F (2001) Macronutrient composition and food selection. Obes Res 9, 256S–262S.Google Scholar
29.Hopkins, M, Blundell, JE & King, NA (2014) Individual variability in compensatory eating following acute exercise in overweight and obese women. Br J Sports Med 48, 1472–1476.CrossRef | Google Scholar | PubMed
30.López-Soldado, I, Fuentes-Romero, R, Duran, J et al. (2017) Effects of hepatic glycogen on food intake and glucose homeostasis are mediated by the vagus nerve in mice. Diabetologia 60, 1076–1083.CrossRef | Google Scholar | PubMed
31.Bachman, JL, Deitrick, RW & Hillman, AR (2016) Exercising in the fasted state reduced 24-hour energy intake in active male adults. J Nutr Metab 2016, 1984198.CrossRef | Google Scholar | PubMed
32.Hutchison, A, Wittert, G & Heilbronn, L (2017) Matching meals to body clocks – impact on weight and glucose metabolism. Nutrients 9, 222.CrossRef | Google Scholar | PubMed
33.Betts, JA, Chowdhury, EA, Gonzalez, JT et al. (2016) Is breakfast the most important meal of the day? Proc Nutr Soc 75, 464–474.Google Scholar
34.Gillen, JB, Percival, , Alison, L et al. (2013) Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity 21, 2249–2255.CrossRef | Google Scholar | PubMed
35.Proeyen, KV, Szlufcik, K, Nielens, H et al. (2011) Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J Appl Physiol 110, 236–245.CrossRef | Google Scholar | PubMed
36.Schoenfeld, BJ, Aragon, AA, Wilborn, CD et al. (2014) Body composition changes associated with fasted versus non-fasted aerobic exercise. J Int Soc Sports Nutr 11, 54.CrossRef | Google Scholar | PubMed
37.Ross, R, Dagnone, D, Jones, PH et al. (2000) Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men: a randomized, controlled trial. Ann Intern Med 133, 92–103.CrossRef | Google Scholar | PubMed
38.Ross, R, Janssen, I, Dawson, J et al. (2004) Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes Res 12, 789–798.CrossRef | Google Scholar | PubMed
39.Hall, KD & Guo, J (2017) Obesity energetics: body weight regulation and the effects of diet composition. Gastroenterology 152, 1718–1727. e1713.CrossRef | Google Scholar | PubMed
40.Karen, VP, Karolina, S, Henri, N et al. (2010) Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol 588, 4289–4302.Google Scholar
41.Arner, P, Bernard, S, Salehpour, M et al. (2011) Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478, 110–113.CrossRef | Google Scholar | PubMed
42.Frayn, K, Bernard, S, Spalding, K et al. (2012) Adipocyte triglyceride turnover is independently associated with atherogenic dyslipidemia. J Am Heart Assoc Cardiovasc Cerebrovasc Dis 1, e003467.Google Scholar | PubMed
43.Chen, Y-C, Travers, RL, Walhin, J-P et al. (2017) Feeding influences adipose tissue responses to exercise in overweight men. Am J Physiol Endocrinol Metab 313, E84–E93.CrossRef | Google Scholar | PubMed
44.Civitarese, AE, Hesselink, MKC, Russell, AP et al. (2005) Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. Am J Physiol Endocrinol Metab 289, E1023–E1029.CrossRef | Google Scholar | PubMed
45.Cluberton, LJ, McGee, SL, Murphy, RM et al. (2005) Effect of carbohydrate ingestion on exercise-induced alterations in metabolic gene expression. J Appl Physiol 99, 1359–1363.CrossRef | Google Scholar | PubMed
46.Shaw, CS, Clark, J & Wagenmakers, AJM (2010) The effect of exercise and nutrition on intramuscular fat metabolism and insulin sensitivity. Annu Rev Nutr 30, 13–34.CrossRef | Google Scholar | PubMed
47.Bock, KD, Derave, W, Eijnde, BO et al. (2008) Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. J Appl Physiol 104, 1045–1055.CrossRef | Google Scholar | PubMed
48.Edinburgh, RM, Hengist, A, Smith, HA et al. (2018) Pre-exercise breakfast ingestion versus extended overnight fasting increases postprandial glucose flux after exercise in healthy men: pre-exercise feeding and postprandial glucose flux. Am J Physiol Endocrinol Metab (In the Press).CrossRef | Google Scholar
49.Hawley, JA, Lundby, C, Cotter, JD et al. (2018) Maximizing cellular adaptation to endurance exercise in skeletal muscle. Cell Metab 27, 962–976.CrossRef | Google Scholar | PubMed
50.Aird, TP, Davies, RW & Carson, BP (2018) Effects of fasted vs fed-state exercise on performance and post-exercise metabolism: a systematic review and meta-analysis. Scand J Med Sci Sports 28, 1476–1493.CrossRef | Google Scholar | PubMed
51.Solomon, TPJ, Eves, FF & Laye, MJ (2018) Targeting postprandial hyperglycemia with physical activity may reduce cardiovascular disease risk. But what should we do, and when is the right time to move? Front Cardiovasc Med 5 [Epublication ahead of print version].CrossRef | Google Scholar | PubMed
52.Zarins, ZA, Wallis, GA, Faghihnia, N et al. (2009) Effects of endurance training on cardiorespiratory fitness and substrate partitioning in postmenopausal women. Metab Clin Exp 58, 1338–1346.CrossRef | Google Scholar | PubMed
53.Frawley, K, Greenwald, G, Rogers, RR et al. (2018) Effects of prior fasting on fat oxidation during resistance exercise. Int J Exerc Sci 11, 827–833.Google 

https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/is-exercise-best-served-on-an-empty-stomach/A04D0203FA9EE39985F0E8E8D2162D10

Endereço: https://www.cambridge.org/core/journals/proceedings-of-the-nutrition-society/article/is-exercise-best-served-on-an-empty-stomach/A04D0203FA9EE39985F0E8E8D2162D10

Comentários


:-)





© 1996-2019 Centro Esportivo Virtual - CEV.
O material veiculado neste site poderá ser livremente distribuído para fins não comerciais, segundo os termos da licença da Creative Commons.