Resumo

Acreditava-se inicialmente que a produção de espécies reativas de oxigênio (EROs) estava associada apenas aos danos oxidativos e efeitos deletérios às células. Atualmente, evidências sugerem que as EROs desempenham papel benéfico e estão associadas às adaptações estruturais e funcionais das células, por meio de regulação de vias de sinalizações celulares. Nas células musculares, sabe-se que sua função é dependente do estado redox das mesmas. De fato a produção exacerbada destas EROs é um fator limitante da contração muscular, no entanto, um ambiente celular reduzido também afeta negativamente a função muscular. Além disso, adaptações ao exercício físico parecem ser reguladas por vias de sinalizações sensíveis a oxidação por EROs. A NADPH oxidase é um importante complexo enzimático produtor de EROs no músculo esquelético (ME) e considerada como principal fonte de EROs no citosol durante a contração. Além disso, as proteínas envolvidas na contração muscular são sensíveis e reguladas dependente do estado redox celular, e, a NADPH oxidase esta localizada, aparentemente de forma estratégica, próxima a estas proteínas. Desta forma, tornou-se pertinente o estudo da inibição da NADPH oxidase, com apocinina in vivo, em adaptações ao treinamento físico intervalado intenso (TFII), uma vez que esta enzima tem sua atividade aumentada em estudos de contração muscular in vitro. Para investigar o efeito do TFII associado à administração de apocinina sobre as adaptações estruturais, funcionais e redox do músculo esquelético, foram utilizados ratos wistar (3 meses de idade) distribuídos aleatoriamente em 4 grupos: controle sedentário (CS), controle treinado (CT), apocinina sedentário (AS), e apocinina treinado (AT). O protocolo de TFII foi de corrida em esteira rolante durante 2 meses (1h, 5x/sem) com intensidade intervalada (3min a 60% VO2máx e 4min a 85% VO2máx) em inclinação de 20°. O tratamento com a apocinina (30 mg/kg/dia) foi por gavagem durante 2 meses. Foram avaliadas nos músculos sóleo e EDL, as medidas de capilarização, área de secção transversa (AST), distribuição de tipos de fibra, atividades de enzimas antioxidantes: superóxido dismutase (SOD) e catalase (CAT), o estado redox pela razão GSH:GSSG, e lesões oxidativas pelas concentrações de hidroperóxidos lipídicos e proteínas carboniladas. Os resultados demonstraram, que no músculo sóleo, o TFII não alterou a atividade da NADPH oxidase, mas aumentou a capilarização (82%), a atividade da SOD (47%) e a razão GSH:GSSG (52%), e diminuiu a atividade da CAT (-38%). No músculo EDL, o TFII aumentou as atividades das enzimas NADPH oxidase (141%), SOD (36%) e CAT (88%), bem como a capilarização (50%) e mudanças de tipos de fibras. Com isso observou-se que a apocinina não teve efeito sobre a função, estrutura e estado redox do ME de ratos sedentários. No entanto, a apocinina inibiu as adaptações induzidas pelo TFII em ambos os músculos (sóleo e EDL). O TFII aumentou a atividade da NADPH oxidase apenas no músculo EDL mostrando comportamentos diferentes das atividades desta enzima, em resposta a este tipo de treino, entre os músculos de características oxidativas e glicolíticas. Sendo assim, a NADPH oxidase parece participar das vias sinalizadoras para as adaptações induzidas pelo TFII apenas nos músculos glicolíticos. Diante desses resultados, conclui-se que músculos glicolíticos e oxidativos podem ter vias de sinalizações diferentes para as adaptações do ME ao exercício. Isto reforça e também explica a importância da intensidade e duração do exercício em respostas adaptativas, uma vez que estas variáveis influenciam o estado redox e também desencadeiam adaptações diferentes no ME. Futuramente, informações do estado redox muscular podem ser usadas para melhorar a especialização do treinamento físico de atletas

Acessar Arquivo