Resumo

O uso de dispositivos vestíveis que monitoram a atividade física deve aumentar mais de cinco vezes a cada meia década1. Nós investigamos como o gasto energético de atividade física (PAEE) baseado em dispositivo e diferentes perfis de intensidade foram associados com todas as causas de mortalidade. Usamos uma abordagem de harmonização de rede para mapear a aceleração de pulso dominante para PAEE em 96.476 participantes do UK Biobank (idade média de 62 anos, 56% mulheres). Também calculamos a fração de PAEE acumulada da atividade física de intensidade moderada a vigorosa (AFMV). Durante o período de acompanhamento médio de 3,1 anos (302.526 pessoas-ano), 732 mortes foram registradas. PAEE mais alto foi associado a um risco mais baixo de mortalidade por todas as causas para uma fração constante de AFMV (por exemplo, 21% (intervalo de confiança de 95% 4-35%) risco mais baixo para 20 contra 15 kJ kg − 1 d − 1 PAEE com 10% de AFMV). Da mesma forma, uma fração de AFMV mais alta foi associada a um risco menor quando o PAEE permaneceu constante (por exemplo, 30% (8-47%) risco menor quando 20% versus 10% de um volume fixo de 15 kJ kg-1 d-1 PAEE foi de MVPA). Nossos resultados mostram que volumes maiores de PAEE estão associados a taxas de mortalidade reduzidas, e atingir o mesmo volume por meio de atividades de maior intensidade está associado a maiores reduções do que por atividades de intensidade mais baixa. A ligação da atividade medida pelo dispositivo ao gasto de energia cria uma estrutura para o uso de vestíveis para prevenção personalizada.
References

1. Wearable Devices https://www.statista.com/study/15607/wearable-technology-statista-dossier/ (Statista, 2019).

2. Welk, G. J. et al. Standardizing analytic methods and reporting in activity monitor validation studies. Med. Sci. Sports Exerc. 51, 1767–1780 (2019).

PubMed PubMed Central Article Google Scholar 

3. Pate, R. R. et al. Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. J. Am. Med. Assoc. 273, 402–407 (1995).

CAS Article Google Scholar 

4. US Department of Health and Human Services. 2008 Physical Activity Guidelines for Americans (Washington, DC, 2008).

5. World Health Organization. Global Recommendations on Physical Activity for Health (Geneva, 2010).

6. Department of Health. Start Active, Stay Active: A Report on Physical Activity from the Four Home Countries’ Chief Medical Officers (London, 2011).

7. Ainsworth, B. E. et al. Compendium of physical activities: a second update of codes and MET values. Med. Sci. Sports Exerc. 43, 1575–1581 (2011).

PubMed Article Google Scholar 

8. Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report (US Department of Health and Human Services, 2018).

9. Chastin, S. F. M. et al. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. Br. J. Sports Med. 53, 370–376 (2019).

PubMed Article Google Scholar 

10. UK Chief Medical Officers’ Physical Activity Guidelines (Department of Health & Social Care, Welsh Government, Department of Health Northern Ireland & Scottish Government, 2019).

11. Lindsay, T. et al. Descriptive epidemiology of physical activity energy expenditure in UK adults (The Fenland Study). Int. J. Behav. Nutr. Phys. Act https://doi.org/10.1186/s12966-019-0882-6 (2019).

12. Schmid, D., Ricci, C., Baumeister, S. E. & Leitzmann, M. F. Replacing sedentary time with physical activity in relation to mortality. Med. Sci. Sports Exerc. 48, 1312–1319 (2016).

PubMed Article Google Scholar 

13. Wijndaele, K., Sharp, S. J., Wareham, N. J. & Brage, S. Mortality risk reductions from substituting screen time by discretionary activities. Med. Sci. Sports Exerc. 49, 1111–1119 (2017).

PubMed PubMed Central Article Google Scholar 

14. Matthews, C. E. et al. Accelerometer-measured dose-response for physical activity, sedentary time, and mortality in US adults. Am. J. Clin. Nutr. 104, 1424–1432 (2016).

CAS PubMed PubMed Central Article Google Scholar 

15. Saint-Maurice, P. F., Troiano, R. P., Berrigan, D., Kraus, W. E. & Matthews, C. E. Volume of light versus moderate-to-vigorous physical activity: similar benefits for all-cause mortality? J. Am. Heart Assoc. https://doi.org/10.1161/JAHA.118.008815 (2018).

16. Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

Article Google Scholar 

17. Ekelund, U. et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis. Br. Med. J. 366, l4570 (2019).

Article Google Scholar 

18. Manson, J. E. et al. A prospective study of walking as compared with vigorous exercise in the prevention of coronary heart disease in women. N. Engl. J. Med. 341, 650–658 (1999).

CAS PubMed Article Google Scholar 

19. Tanasescu, M. et al. Exercise type and intensity in relation to coronary heart disease in men. J. Am. Med. Assoc. 288, 1994–2000 (2002).

Article Google Scholar 

20. White, T. et al. Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: a doubly labelled water study. Int. J. Obes. https://doi.org/10.1038/s41366-019-0352-x (2019).

21. White, T., Westgate, K., Wareham, N. J. & Brage, S. Estimation of physical activity energy expenditure during free-living from wrist accelerometry in UK adults. PLoS ONE 11, e0167472 (2016).

PubMed PubMed Central Article Google Scholar 

22. Tikkanen, E., Gustafsson, S. & Ingelsson, E. Associations of fitness, physical activity, strength, and genetic risk with cardiovascular disease: longitudinal analyses in the UK Biobank study. Circulation 137, 2583–2591 (2018).

PubMed PubMed Central Article Google Scholar 

23. Strain, T. et al. Impact of follow-up time and analytical approaches to account for reverse causality on the association between physical activity and health outcomes in UK Biobank. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyz212 (2019).

24.

Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).

PubMed PubMed Central Article Google Scholar 

25. Brage, S. et al. Descriptive epidemiology of energy expenditure in the UK: findings from the National Diet and Nutrition Survey 2008–15. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyaa005 (2020).

26. Shephard, R. J. Absolute versus relative intensity of physical activity in a dose-response context. Med. Sci. Sports Exerc. 33, S400–S420 (2001).

CAS PubMed Article Google Scholar 

27. Shiroma, E. J., Sesso, H. D., Moorthy, M. V., Buring, J. E. & Lee, I. M. Do moderate-intensity and vigorous-intensity physical activities reduce mortality rates to the same extent? J. Am. Heart Assoc. 3, e000802 (2014).

PubMed PubMed Central Article Google Scholar 

28. Gebel, K., Ding, D. & Bauman, A. E. Volume and intensity of physical activity in a large population-based cohort of middle-aged and older Australians: prospective relationships with weight gain, and physical function. Prev. Med. 60, 131–133 (2014).

PubMed Article Google Scholar 

29. Sudlow, C. et al. UK Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

PubMed PubMed Central Article Google Scholar 

30. van Hees, V. T. et al. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J. Appl. Physiol. 117, 738–744 (2014).

PubMed PubMed Central Article Google Scholar 

31. Doherty, A. et al. Large scale population assessment of physical activity using wrist worn accelerometers: the UK Biobank study. PLoS ONE 12, e0169649 (2017).

PubMed PubMed Central Article Google Scholar 

32. van Hees, V. T. et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE 8, e61691 (2013).

PubMed PubMed Central Article Google Scholar 

33. Pearce, M. et al. Network harmonization of physical activity variables through indirect validation. J. Meas. Phys. Behav. https://doi.org/10.1123/jmpb.2019-0001 (2019).

34. Klass, M., Faoro, V. & Carpentier, A. Assessment of energy expenditure during high intensity cycling and running using a heart rate and activity monitor in young active adults. PLoS ONE 14, e0224948 (2019).

CAS PubMed PubMed Central Article Google Scholar 

35. Brage, S. et al. Estimation of free-living energy expenditure by heart rate and movement sensing: a doubly-labelled water study. PLoS ONE 10, e0137206 (2015).

PubMed PubMed Central Article Google Scholar 

36. Brage, S. et al. Hierarchy of individual calibration levels for heart rate and accelerometry to measure physical activity. J. Appl. Physiol. 103, 682–692 (2007).

PubMed Article Google Scholar 

37. Thompson, D., Batterham, A. M., Bock, S., Robson, C. & Stokes, K. Assessment of low-to-moderate intensity physical activity thermogenesis in young adults using synchronized heart rate and accelerometry with branched-equation modeling. J. Nutr. 136, 1037–1042 (2006).

CAS PubMed Article Google Scholar 

38. Brage, S. et al. Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J. Appl. Physiol. 96, 343–351 (2004).

PubMed Article Google Scholar 

39. Strath, S. J., Brage, S. & Ekelund, U. Integration of physiological and accelerometer data to improve physical activity assessment. Med. Sci. Sports Exerc. 37, S563–S571 (2005).

PubMed Article Google Scholar 

40. White, I. R. & Royston, P. Imputing missing covariate values for the Cox model. Stat. Med. 28, 1982–1998 (2009).

Acessar