Resumo

Os humanos têm uma forte necessidade de pertencer a grupos sociais e uma inclinação natural para beneficiar os membros do grupo. Embora os mecanismos psicológicos por trás da prosocialidade humana tenham sido extensivamente estudados, os sistemas neurais específicos que fazem a ponte entre a pertença do grupo e a motivação altruísta ainda precisam ser identificados. Aqui, usamos fandom de futebol como um enquadramento ecológico de participação em grupo para investigar os mecanismos neurais subjacentes ao comportamento altruísta em grupo de fãs do sexo masculino usando a ressonância magnética funcional relacionada a eventos. Projetamos uma medida de esforço com base na força de preensão manual para avaliar a motivação para ganhar dinheiro (i) para si mesmo, (ii) para os fãs anônimos do grupo interno ou (iii) para um grupo neutro de não fãs anônimos. Enquanto sinais de avaliação sobrepostos no córtex orbitofrontal medial (mOFC) foram observados para as três condições, o córtex cingulado subgenual (SCC) exibiu maior conectividade funcional com o mOFC, bem como respostas hemodinâmicas mais fortes para as decisões ingroup versus outgroup. Estas descobertas indicam um papel chave para o CEC, uma região anteriormente implicada em decisões altruístas e afiliação de grupo, em alinhar motivações altruístas com sistemas de avaliação neural no comportamento em grupo da vida real.

References

1. Boyd, R., Richerson, P. J. & Henrich, J. Rapid cultural adaptation can facilitate the evolution of large-scale cooperation. Behav. Ecol. Sociobiol. 65, 431–444, https://doi.org/10.1007/s00265-010-1100-3 (2011).

Show contextfor reference 1

2. Bowles, S. Did Warfare Among Ancestral Hunter-Gatherers Affect the Evolution of Human Social Behaviors? Science (80−.). 324, 1293–1298, https://doi.org/10.1126/science.1168112 (2009).

Show contextfor reference 2

3. Baumeister, R. F. & Leary, M. R. The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 117, 497–529, https://doi.org/10.1037/0033-2909.117.3.497 (1995).

Show contextfor reference 3

4. Tajfel, H. & Turner, J. C. An integrative theory of intergroup conflict In Psychology of Intergroup Relations. in The Social Psychology of Intergroup Relations. (eds Austin, W. G. & Worchel, S.) 33–47 (Brooks-Cole, 1979).

Show contextfor reference 4

5. Penner, L. A., Dovidio, J. F., Piliavin, J. A. & Schroeder, D. A. Prosocial Behavior: Multilevel Perspectives. Annu. Rev. Psychol.56, 365–392, https://doi.org/10.1146/annurev.psych.56.091103.070141 (2005).

Show contextfor reference 5

6. Ellemers, N., Spears, R. & Doosje, B. Self and Social Identity. Annu. Rev. Psychol. 53, 161–186, https://doi.org/10.1146/annurev.psych.53.100901.135228 (2002).

Show contextfor reference 6

7. Shkurko, A. V. Is social categorization based on relational ingroup/outgroup opposition? A meta-analysis. Soc. Cogn. Affect. Neurosci. 8, 870–877, https://doi.org/10.1093/scan/nss085 (2013).

Show contextfor reference 7

8. Cikara, M. & Van Bavel, J. J. The Neuroscience of Intergroup Relations: An Integrative Review. Perspect. Psychol. Sci. 9, 245–274, https://doi.org/10.1177/1745691614527464 (2014).

Show contextfor reference 8

9. Volz, K. G., Kessler, T. & von Cramon, D. Y. In-group as part of the self: In-group favoritism is mediated by medial prefrontal cortex activation. Soc. Neurosci. 4, 244–60, https://doi.org/10.1080/17470910802553565 (2009).

Show contextfor reference 9

10. Rilling, J. K., Dagenais, J. E., Goldsmith, D. R., Glenn, A. L. & Pagnoni, G. Social cognitive neural networks during in-group and out-group interactions. Neuroimage 41, 1447–61, https://doi.org/10.1016/j.neuroimage.2008.03.044 (2008).

Show contextfor reference 10

11. Telzer, E. H., Ichien, N. & Qu, Y. The ties that bind: Group membership shapes the neural correlates of in-group favoritism. Neuroimage 115, 42–51, https://doi.org/10.1016/j.neuroimage.2015.04.035 (2015).

Show contextfor reference 11

12. Hackel, L. M., Zaki, J. & Van Bavel, J. J. Social identity shapes social valuation: evidence from prosocial behavior and vicarious reward. Soc. Cogn. Affect. Neurosci., https://doi.org/10.1093/scan/nsx045(2017).

Show contextfor reference 12

13. Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26, https://doi.org/10.1038/npp.2009.129 (2010).

Show contextfor reference 13

14. Moll, J. et al. Human fronto-mesolimbic networks guide decisions about charitable donation. Proc. Natl. Acad. Sci. USA 103, 15623–8, https://doi.org/10.1073/pnas.0604475103 (2006).

Show contextfor reference 14

15. Harbaugh, W. T., Mayr, U. & Burghart, D. R. Neural responses to taxation and voluntary giving reveal motives for charitable donations. Science 316, 1622–5, https://doi.org/10.1126/science.1140738 (2007).

Show contextfor reference 15

16. Bartels, A. & Zeki, S. The neural basis of romantic love. Neuroreport 11, 3829–34, https://doi.org/10.1097/00001756-200011270-00046 (2000).

Show contextfor reference 16

17. Aron, A. Reward, Motivation, and Emotion Systems Associated With Early-Stage Intense Romantic Love. J. Neurophysiol. 94, 327–337, https://doi.org/10.1152/jn.00838.2004 (2005).

Show contextfor reference 17

18. Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76, 412–427, https://doi.org/10.1016/j.neuroimage.2013.02.063 (2013).

Show contextfor reference 18

19. Sescousse, G., Caldú, X., Segura, B. & Dreher, J.-C. Processing of primary and secondary rewards: A quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci. Biobehav. Rev. 37, 681–696, https://doi.org/10.1016/j.neubiorev.2013.02.002 (2013).

Show contextfor reference 19

20. Clithero, J. & Rangel, A. Informatic parcellation of the network involved in the computation of subjective value. Soc. Cogn. Affect. Neurosci. 9, 1289–1302, https://doi.org/10.1093/scan/nst106(2014).

Show contextfor reference 20

21. Kable, J. W. & Glimcher, P. W. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10, 1625–33, https://doi.org/10.1038/nn2007 (2007).

Show contextfor reference 21

22. Rangel, A. & Hare, T. Neural computations associated with goal-directed choice. Curr. Opin. Neurobiol. 20, 262–270, https://doi.org/10.1016/j.conb.2010.03.001 (2010).

Show contextfor reference 22

23. Stalnaker, T. A., Cooch, N. K. & Schoenbaum, G. What the orbitofrontal cortex does not do. Nat. Neurosci. 18, 620–627, https://doi.org/10.1038/nn.3982 (2015).

Show contextfor reference 23

24. Krueger, F., Barbey, A. K. & Grafman, J. The medial prefrontal cortex mediates social event knowledge. Trends Cogn. Sci. 13, 103–109, https://doi.org/10.1016/j.tics.2008.12.005 (2009).

Show contextfor reference 24

25. Ruff, C. C. & Fehr, E. The neurobiology of rewards and values in social decision making. Nat. Rev. Neurosci., https://doi.org/10.1038/nrn3776 (2014).

Show contextfor reference 25

26. Molenberghs, P. & Morrison, S. The role of the medial prefrontal cortex in social categorization. Soc. Cogn. Affect. Neurosci. 9, 292–296, https://doi.org/10.1093/scan/nss135 (2012).

Show contextfor reference 26

27. Molenberghs, P. et al. The influence of group membership and individual differences in psychopathy and perspective taking on neural responses when punishing and rewarding others. Hum. Brain Mapp. 0, https://doi.org/10.1002/hbm.22527 (2014).

Show contextfor reference 27

28. Moll, J., Zahn, R., de Oliveira-Souza, R., Krueger, F. & Grafman, J. Opinion: the neural basis of human moral cognition. Nat. Rev. Neurosci. 6, 799–809, https://doi.org/10.1038/nrn1768 (2005).

Show contextfor reference 28

29. Tabibnia, G. & Lieberman, M. D. Fairness and cooperation are rewarding: evidence from social cognitive neuroscience. Ann. N. Y. Acad. Sci. 1118, 90–101, https://doi.org/10.1196/annals.1412.001(2007).

Show contextfor reference 29

30. Bhanji, J. P. & Delgado, M. R. The Social Brain and Reward: Social Information Processing in the Human Striatum. Wiley Interdiscip. Rev. Cogn. Sci. 5, 61–73, https://doi.org/10.1002/wcs.1266 (2014).

Show contextfor reference 30

31. FeldmanHall, O., Dalgleish, T., Evans, D. & Mobbs, D. Empathic concern drives costly altruism. Neuroimage 105, 347–356, https://doi.org/10.1016/j.neuroimage.2014.10.043 (2015).

Show contextfor reference 31

32. Hsu, M., Anen, C. & Quartz, S. R. The right and the good: distributive justice and neural encoding of equity and efficiency. Science 320, 1092–5, https://doi.org/10.1126/science.1153651(2008).

Show contextfor reference 32

33. Morelli, S. A., Rameson, L. T. & Lieberman, M. D. The neural components of empathy: predicting daily prosocial behavior. Soc. Cogn. Affect. Neurosci. 9, 39–47, https://doi.org/10.1093/scan/nss088 (2014).

Show contextfor reference 33

34. Lockwood, P. L., Apps, M. A. J., Valton, V., Viding, E. & Roiser, J. P. Neurocomputational mechanisms of prosocial learning and links to empathy. Proc. Natl. Acad. Sci. 113, 9763–9768, https://doi.org/10.1073/pnas.1603198113 (2016).

Show contextfor reference 34

CAS
Article

 Central
Google Scholar

35.

Moll, J. et al. A neural signature of affiliative emotion in the human septohypothalamic area. J. Neurosci. 32, 12499–505, https://doi.org/10.1523/jneurosci.6508-11.2012 (2012).

Show contextfor reference 35

36.Mobbs, D. et al. A key role for similarity in vicarious reward. Science 324, 900, https://doi.org/10.1126/science.1170539 (2009).

Show contextfor reference 36

37. Rüsch, N. et al. You and your kin: Neural signatures of family-based group perception in the subgenual cortex. Soc. Neurosci. 9, 326–31, https://doi.org/10.1080/17470919.2014.912676 (2014).

Show contextfor reference 37

38. Morrison, S., Decety, J. & Molenberghs, P. The neuroscience of group membership. Neuropsychologia 50, 2114–2120, https://doi.org/10.1016/j.neuropsychologia.2012.05.014 (2012).

Show contextfor reference 38

39. Insel, T. R. & Young, L. J. The neurobiology of attachment. Nat. Rev. Neurosci. 2, 129–36, https://doi.org/10.1038/35053579(2001).

Show contextfor reference 39

CAS
Article

Google Scholar

40.

Freedman, L. J., Insel, T. R. & Smith, Y. Subcortical projections of area 25 (subgenual cortex) of the macaque monkey. J. Comp. Neurol. 421, 172–88, https://doi.org/10.1002/(SICI)1096-9861(20000529)421:2<172::AID-CNE4>3.0.CO;2-8 (2000).

Show contextfor reference 40

CAS
Article

Google Scholar

41.

Morgane, P. J., Galler, J. R. & Mokler, D. J. A review of systems and networks of the limbic forebrain/limbic midbrain. Prog. Neurobiol. 75, 143–60, https://doi.org/10.1016/j.pneurobio.2005.01.001 (2005).

Show contextfor reference 41

Article

Google Scholar

42.

Meyer-Lindenberg, A., Domes, G., Kirsch, P. & Heinrichs, M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat. Rev. Neurosci. 12, 524–38, https://doi.org/10.1038/nrn3044 (2011).

Show contextfor reference 42

CAS
Article

Google Scholar

43.

Depue, R. A. & Morrone-Strupinsky, J. V. A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behav. Brain Sci. 28, 313–395, https://doi.org/10.1017/S0140525X05000063 (2005).

Show contextfor reference 43


Google Scholar

44.

Preston, S. D. The origins of altruism in offspring care. Psychol. Bull. 139, 1305–1341, https://doi.org/10.1037/a0031755 (2013).

Show contextfor reference 44

Article

Google Scholar

45.

Feldman, R. The Neurobiology of Human Attachments. Trends Cogn. Sci. 21, 80–99, https://doi.org/10.1016/j.tics.2016.11.007(2017).

Show contextfor reference 45

Article

Google Scholar

46.

Weisel, O. & Böhm, R. ‘Ingroup love’ and ‘outgroup hate’ in intergroup conflict between natural groups. J. Exp. Soc. Psychol.60, 110–120, https://doi.org/10.1016/j.jesp.2015.04.008 (2015).

Show contextfor reference 46

Article

 Central
Google Scholar

47.

Newson, M., Buhrmester, M. & Whitehouse, H. Explaining Lifelong Loyalty: The Role of Identity Fusion and Self-Shaping Group Events. PLoS One 11, e0160427, https://doi.org/10.1371/journal.pone.0160427 (2016).

Show contextfor reference 47

Article

48. Wann, D. L. & Branscombe, N. R. Sports fans: Measuring degree of identification with their team. Int. J. Sport Psychol. 24, 1–17 (1993).

Show contextfor reference 48

49. Wann, D. L. & Dolan, T. J. Attributions of Highly Identified Sports Spectators. J. Soc. Psychol. 134, 783–792, https://doi.org/10.1080/00224545.1994.9923013 (1994).

Show contextfor reference 49

50. Stone, C. The Role of Football in EverydayLife. Soccer Soc. 8, 169–184, https://doi.org/10.1080/14660970701224319 (2007).

Show contextfor reference 50

51. Batson, C. D. Altruism in Humans. (Oxford University Press, 2010).

Show contextfor reference 51

52. Chong, T. T.-J., Bonnelle, V. & Husain, M. Quantifying motivation with effort-based decision-making paradigms in health and disease. in Motivation: Theory, Neurobiology and Applications 71–100 (Elsevier B.V., 2016).

Show contextfor reference 52

53.

Stroebe, K., Lodewijkx, H. & Spears, R. Do Unto Others as They Do Unto You: Reciprocity and Social Identification as Determinants of Ingroup Favoritism. Personal. Soc. Psychol. Bull. 31, 831–845, https://doi.org/10.1177/0146167204271659 (2005).

Show contextfor reference 53

Article
Google Scholar

54.

Liu, X., Hairston, J., Schrier, M. & Fan, J. Common and distinct networks underlying reward valence and processing stages: A meta-analysis of functional neuroimaging studies. Neurosci. Biobehav. Rev. 35, 1219–1236, https://doi.org/10.1016/j.neubiorev.2010.12.012 (2011).

Show contextfor reference 54

55. Hare, T. A., O’Doherty, J., Camerer, C. F., Schultz, W. & Rangel, A. Dissociating the role of the orbitofrontal cortex and the striatum in the computation of goal values and prediction errors. J. Neurosci. 28, 5623–30, https://doi.org/10.1523/jneurosci.1309-08.2008 (2008).

Show contextfor reference 55

CAS
Article

Google Scholar

56.

Atzil, S., Hendler, T., Zagoory-Sharon, O., Winetraub, Y. & Feldman, R. Synchrony and Specificity in the Maternal and the Paternal Brain: Relations to Oxytocin and Vasopressin. J. Am. Acad. Child Adolesc. Psychiatry 51, 798–811, https://doi.org/10.1016/j.jaac.2012.06.008 (2012).

Show contextfor reference 56

Article

Google Scholar

57.

Nichols, T., Brett, M., Andersson, J., Wager, T. & Poline, J.-B. Valid conjunction inference with the minimum statistic. Neuroimage 25, 653–660, https://doi.org/10.1016/j.neuroimage.2004.12.005(2005).

Show contextfor reference 57

Article

Google Scholar

58.

Cisler, J. M., Bush, K. & Steele, J. S. A comparison of statistical methods for detecting context-modulated functional connectivity in fMRI. Neuroimage 84, 1042–1052, https://doi.org/10.1016/j.neuroimage.2013.09.018 (2014).

Show contextfor reference 58

Article

Google Scholar

59.

van Veelen, R., Otten, S., Cadinu, M. & Hansen, N. An Integrative Model of Social Identification: Self-Stereotyping and Self-Anchoring as Two CognitivePathways. Personal. Soc. Psychol. Rev.  20, 1–24, https://doi.org/10.1177/1088868315576642 (2015).

Show contextfor reference 59

60.

Montague, J. Corinthians: Craziest fans in the world? CNN (2012). Available at: http://edition.cnn.com/2012/12/14/sport/football/football-club-world-cup-crazy-fans-corinthians/. (Accessed: 8th August 2017).

Show contextfor reference 60

61.

Witte, D. R., Bots, M. L., Hoes, A. W. & Grobbee, D. E. Cardiovascular mortality in Dutch men during 1996 European football championship: longitudinal population study. BMJ 321, 1552–1554, https://doi.org/10.1136/bmj.321.7276.1552 (2000).

Show contextfor reference 61

CAS
Article

 Central
Google Scholar

62.

Carroll, D., Ebrahim, S., Tilling, K., Macleod, J. & Smith, G. D. Admissions for myocardial infarction and World Cup football: database survey. BMJ 325, 1439–42, https://doi.org/10.1136/bmj.325.7378.1439 (2002).

Show contextfor reference 62

Article

 Central
Google Scholar

63.

Borges, D. G. S., Monteiro, R. A., Schmidt, A. & Pazin-Filho, A. World Soccer Cup as a Trigger of Cardiovascular Events. Arq. Bras. Cardiol., https://doi.org/10.5935/abc.20130105 (2013).

Show contextfor reference 63

64.

Kirkup, W. & Merrick, D. W. A matter of life and death: population mortality and football results. J. Epidemiol. Community Health 57, 429–32, https://doi.org/10.1136/jech.57.6.429 (2003).

Show contextfor reference 64

CAS
Article

 Central
Google Scholar

65.

Kümmerli, R., Burton-Chellew, M. N., Ross-Gillespie, A. & West, S. A. Resistance to extreme strategies, rather than prosocial preferences, can explain human cooperation in public goods games. Proc. Natl. Acad. Sci. USA 107, 10125–30, https://doi.org/10.1073/pnas.1000829107 (2010).

Show contextfor reference 65

Article

 Central
Google Scholar

66.

Burton-Chellew, M. N. & West, S. A. Prosocial preferences do not explain human cooperation in public-goods games. Proc. Natl. Acad. Sci. USA 110, 216–21, https://doi.org/10.1073/pnas.1210960110 (2013).

Show contextfor reference 66

ADS
CAS
Article

Google Scholar

67.

Hagen, E. H. & Hammerstein, P. Game theory and human evolution: a critique of some recent interpretations of experimental games. Theor. Popul. Biol. 69, 339–48, https://doi.org/10.1016/j.tpb.2005.09.005 (2006).

Show contextfor reference 67

Article

MATH
Google Scholar

68.

Winking, J. & Mizer, N. Natural-field dictator game shows no altruistic giving. Evol. Hum. Behav. 34, 288–293, https://doi.org/10.1016/j.evolhumbehav.2013.04.002 (2013).

Show contextfor reference 68

Article
Google Scholar

69.

Morelli, S. A., Sacchet, M. D. & Zaki, J. Common and distinct neural correlates of personal and vicarious reward: A quantitative meta-analysis. Neuroimage 112, 244–253, https://doi.org/10.1016/j.neuroimage.2014.12.056 (2015).

Show contextfor reference 69

Article

Google Scholar

70.

Zaki, J. & Ochsner, K. N. The neuroscience of empathy: progress, pitfalls and promise. Nat. Neurosci. 15, 675–680, https://doi.org/10.1038/nn.3085 (2012).

Show contextfor reference 70

CAS
Article

Google Scholar

71.

Civai, C., Crescentini, C., Rustichini, A. & Rumiati, R. I. Equality versus self-interest in the brain: differential roles of anterior insula and medial prefrontal cortex. Neuroimage 62, 102–12, https://doi.org/10.1016/j.neuroimage.2012.04.037 (2012).

Show contextfor reference 71

Article

Google Scholar

72.

Singer, T. et al. Empathy for pain involves the affective but not sensory components of pain. Science 303, 1157–62, https://doi.org/10.1126/science.1093535 (2004).

Show contextfor reference 72

ADS
CAS
Article

Google Scholar

73.

Bernhardt, B. C. & Singer, T. The neural basis of empathy. Annu. Rev. Neurosci. 35, 1–23, https://doi.org/10.1146/annurev-neuro-062111-150536 (2012).

Show contextfor reference 73

CAS
Article

Google Scholar

74.

Zaki, J. & Mitchell, J. P. Equitable decision making is associated with neural markers of intrinsic value. Proc. Natl. Acad. Sci. 108, 19761–19766, https://doi.org/10.1073/pnas.1112324108 (2011).

Show contextfor reference 74

ADS
CAS
Article

 Central
Google Scholar

75.

Schoenbaum, G., Takahashi, Y., Liu, T. L. & Mcdannald, M. A. Does the orbitofrontal cortex signal value? Ann. N. Y. Acad. Sci. 1239, 87–99, https://doi.org/10.1111/j.1749-6632.2011.06210.x (2011).

Show contextfor reference 75

ADS
Article

 Central
Google Scholar

76.

Hein, G., Silani, G., Preuschoff, K., Batson, C. D. & Singer, T. Neural responses to ingroup and outgroup members’ suffering predict individual differences in costly helping. Neuron 68, 149–60, https://doi.org/10.1016/j.neuron.2010.09.003 (2010).

Show contextfor reference 76

CAS
Article

Google Scholar

77.

Mathur, V. A., Harada, T., Lipke, T. & Chiao, J. Y. Neural basis of extraordinary empathy and altruistic motivation. Neuroimage 51, 1468–1475, https://doi.org/10.1016/j.neuroimage.2010.03.025(2010).

Show contextfor reference 77

Article

Google Scholar

78.

Bernhard, H., Fischbacher, U. & Fehr, E. Parochial altruism in humans. Nature 442, 912–5, https://doi.org/10.1038/nature04981(2006).

Show contextfor reference 78

ADS
CAS
Article

Google Scholar

79.

Choi, J.-K. & Bowles, S. The coevolution of parochial altruism and war. Science 318, 636–40, https://doi.org/10.1126/science.1144237(2007).

Show contextfor reference 79

ADS
CAS
Article

Google Scholar

80.

Diekhof, E. K., Wittmer, S. & Reimers, L. Does competition really bring out the worst? testosterone, social distance and inter-male competition shape parochial altruism in human males. PLoS One9, https://doi.org/10.1371/journal.pone.0098977 (2014).

Show contextfor reference 80

81.

Reimers, L., Büchel, C. & Diekhof, E. K. Neural substrates of male parochial altruism are modulated by testosterone and behavioral strategy. Neuroimage 156, https://doi.org/10.1016/j.neuroimage.2017.05.033 (2017).

Show contextfor reference 81

82.

Croxson, P. L., Walton, M. E., O’Reilly, J. X., Behrens, T. E. J. & Rushworth, M. F. S. Effort-Based Cost-Benefit Valuation and the Human Brain. J. Neurosci. 29, 4531–4541, https://doi.org/10.1523/jneurosci.4515-08.2009 (2009).

Show contextfor reference 82

CAS
Article

 Central
Google Scholar

83.

Prévost, C., Pessiglione, M., Météreau, E., Cléry-Melin, M.-L. & Dreher, J.-C. Separate valuation subsystems for delay and effort decision costs. J. Neurosci. 30, 14080–90, https://doi.org/10.1523/jneurosci.2752-10.2010 (2010).

Show contextfor reference 83

Article

Google Scholar

84.

Stoppel, C. M. et al. Neural processing of reward magnitude under varying attentional demands. Brain Res. 1383, 218–229, https://doi.org/10.1016/j.brainres.2011.01.095 (2011).

Show contextfor reference 84

CAS
Article

Google Scholar

85.

Kurniawan, I. T., Guitart-Masip, M., Dayan, P. & Dolan, R. J. Effort and Valuation in the Brain: The Effects of Anticipation and Execution. J. Neurosci. 33, 6160–6169, https://doi.org/10.1523/jneurosci.4777-12.2013 (2013).

Show contextfor reference 85

CAS
Article

 Central
Google Scholar

86.

Botvinick, M. M., Huffstetler, S. & McGuire, J. T. Effort discounting in human nucleus accumbens. Cogn. Affect. Behav. Neurosci. 9, 16–27, https://doi.org/10.3758/CABN.9.1.16 (2009).

Show contextfor reference 86

Article

 Central
Google Scholar

87.

McDonald, M. M., Navarrete, C. D. & Van Vugt, M. Evolution and the psychology of intergroup conflict: the male warrior hypothesis. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 670–9, https://doi.org/10.1098/rstb.2011.0301 (2012).

Show contextfor reference 87

Article

 Central
Google Scholar

88.

Balliet, D., Li, N. P., Macfarlan, S. J. & Van Vugt, M. Sex differences in cooperation: a meta-analytic review of social dilemmas. Psychol. Bull. 137, 881–909, https://doi.org/10.1037/a0025354(2011).

Show contextfor reference 88

Article

Google Scholar

89.

Vugt, M. V., Cremer, D. D. & Janssen, D. P. Gender Differences in Cooperation and Competition: The Male-Warrior Hypothesis. Psychol. Sci. 18, 19–23, https://doi.org/10.1111/j.1467-9280.2007.01842.x (2007).

Show contextfor reference 89

Article

Google Scholar

90.

Wachelke, J. F. R., de Andrade, A. L., Tavares, L. & Neves, J. R. L. L. Mensuração da identificação com times de futebol: evidências de validade fatorial e consistência interna de duas escalas. Arq. Bras. Psicol. 60, 98–110 (2008).

Show contextfor reference 90

Google Scholar

91.

Rüsch, N. et al. Ingroup perception and responses to stigma among persons with mental illness. Acta Psychiatr. Scand. 120, 320–8, https://doi.org/10.1111/j.1600-0447.2009.01403.x (2009).

Show contextfor reference 91

Article

Google Scholar

92.

Buhrmester, M. D., Fraser, W. T., Lanman, J. A., Whitehouse, H. & Swann, W. B. When Terror Hits Home: Identity Fused Americans Who Saw Boston Bombing Victims as ‘Family’ Provided Aid. Self Identity 14, 253–270, https://doi.org/10.1080/15298868.2014.992465 (2015).

Show contextfor reference 92

Article
Google Scholar

93.

Postmes, T., Haslam, S. A. & Jans, L. A single-item measure of social identification: Reliability, validity, and utility. Br. J. Soc. Psychol. 52, 597–617, https://doi.org/10.1111/bjso.12006 (2013).

Show contextfor reference 93

Article

Google Scholar

94.

Bodurka, J., Ye, F., Petridou, N., Murphy, K. & Bandettini, P. A. Mapping the MRI voxel volume in which thermal noise matches physiological noise—Implications for fMRI. Neuroimage 34, 542–549, https://doi.org/10.1016/j.neuroimage.2006.09.039 (2007).

Show contextfor reference 94

CAS
Article

Google Scholar

95.

Glover, G. H., Li, T. Q. & Ress, D. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn. Reson. Med. 44, 162–7, https://doi.org/10.1002/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E (2000).

Show contextfor reference 95

CAS
Article

Google Scholar

96.

Kasper, L. et al. The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data. J. Neurosci. Methods 276, 56–72, https://doi.org/10.1016/j.jneumeth.2016.10.019 (2017).

Show contextfor reference 96

Article

Google Scholar

97.

Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. 113, 7900–7905, https://doi.org/10.1073/pnas.1602413113 (2016).

Show contextfor reference 97

CAS
Article

 Central
Google Scholar

98.

Flandin, G. & Friston, K. J. Analysis of family-wise error rates in statistical parametric mapping using random field theory. Preprint at https://arxiv.org/abs/1606.08199 (2016).

Show contextfor reference 98

99.

Göttlich, M., Beyer, F. & Krämer, U. M. BASCO: a toolbox for task-related functional connectivity. Front. Syst. Neurosci. 9, 126, https://doi.org/10.3389/fnsys.2015.00126 (2015).

Show contextfor reference 99



 Central
Google Scholar

100.

Rissman, J., Gazzaley, A. & D’Esposito, M. Measuring functional connectivity during distinct stages of a cognitive task. Neuroimage 23, 752–763, https://doi.org/10.1016/j.neuroimage.2004.06.035 (2004).

Show contextfor reference 100



Google Scholar

101.

Zahn, R., de Oliveira-Souza, R., Bramati, I., Garrido, G. & Moll, J. Subgenual cingulate activity reflects individual differences in empathic concern. Neurosci. Lett. 457, 107–10, https://doi.org/10.1016/j.neulet.2009.03.090 (2009).

Show contextfor reference 101

CAS


 

102.

Mai, J., Majtanik, M. & Paxinos, G. Atlas of the Human Brain. (Academic Press, 2015).

Show contextfor reference 102

Acessar