Composição corporal e estado menopausal em mulheres com câncer de mama: uma revisão da literatura
Por Taiara Scopel Poltronieri (Autor), Rafaela Liberali (Autor).
Resumo
A composição corporal de mulheres diagnosticadas com câncer de mama está propensa a alterações por fatores como idade, estado menopausal, existência e extensão da doença e tratamento antineoplásico. Este cenário é de extrema importância, já que pode vir a interferir também no resultado clínico destas. Objetivo: Avaliar a relação entre composição corporal, estado menopausal e possíveis desfechos clínicos em mulheres com câncer de mama. Materiais e métodos: Revisão integrativa da literatura realizada nas bases de dados PubMed, Scielo e Bireme. Buscaram-se artigos publicados até 2018 em português, inglês ou espanhol. Os critérios de inclusão foram: estudos longitudinais, conduzidos em mulheres na pré- e pós-menopausa, após diagnóstico de câncer de mama, em qualquer estágio e que avaliaram a relação entre estado menopausal e composição corporal. Avaliou-se a qualidade metodológica dos selecionados. Resultados: Seis estudos foram elegíveis, dentre os quais, somente quatro encontraram associação entre alterações na composição corporal e o estado menopausal nesta população. Destes, um mostrou esta relação entre pacientes na pré-menopausa, enquanto que em outros dois, esta foi estatisticamente significativa na pós-menopausa, sendo a sobrevida livre de doença a longo prazo pior nas mulheres pós-menopáusicas com alta quantidade de gordura visceral. Outro, relatou que as alterações foram similares entre ambos os estados menopausais. Conclusão: A presente revisão inova em abordar este assunto, no entanto, mostrou falta de evidências consistentes em relação aos tópicos avaliados. Ademais, visto serem escassos os trabalhos comparando a relação destes com desfechos clínicos entre esses indivíduos, mais estudos são necessários para esclarecer este contexto.
Referências
Aberoumandi SM, Mohammadhosseini M, Abasi E, Saghati S, Nikzamir N, Akbarzadeh A, et al. An update on applications of nanostructured drug delivery systems in cancer therapy: a review. Artificial Cells, Nanomedicine, and Biotechnology. 2016;45(6):1-11.
Li T, Mello-Thoms C, Brennan PC. Descriptive epidemiology of breast cancer in China: incidence, mortality, survival and prevalence. Breast Cancer Research and Treatment. 2016;159(3):395-406.
Pehlivan S, Kuzhan A, Yildirim Y, Fadiloglu C. Comfort and quality of life in patients with breast cancer undergoing radiation therapy. Journal of Balkan Union of Oncology. 2016;21(3):549-555.
Brasil. Ministério da Saúde. Instituto Nacional de Câncer. Coordenação de Prevenção e Vigilância. Estimativa 2018: Incidência de Câncer no Brasil. Rio de Janeiro, RJ: INCA; 2018.
Wu SG, Li H, Tang LY, Sun JY, Zhang WW, Li FY, et al. The effect of distant metastases sites on survival in de novo stage-IV breast cancer: A SEER database analysis. Tumor Biology. 2017;39(6):1-8.
Silva PA, Riul SS. Câncer de mama: fatores de risco e detecção precoce. Revista Brasileira de Enfermagem. 2011;64(6):1016-1021.
American Cancer Society. What causes cancer [Internet]? Atlanta [acesso em jan 2018]. Disponível em: <http://www.cancer.org/cancer/cancercauses/>.
Anderson B, Flanigan J. Novel Methods for Measuring Global Cancer Burden Implications for Global Cancer Control. JAMA Oncology. 2015;1(4):425-427.
Chlebowski RT. Nutrition and physical activity influence on breast cancer incidence and outcome. The Breast. 2013;22(Suppl 2):S30–S37.
Tomasetti C, Vogelstein B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 2015;347(6217):78–81.
Shrivastava SR, Shrivastava PS, Ramasamy J. Exploring the role of dietary factors in the development of breast cancer. Journal of Cancer Research and Therapeutics. 2016;12(2):493-497.
Downs-Holmes C, Silverman, P. Breast cancer: Overview and updates. The Nurse Practitioner. 2011;36(12):20-26.
Friedenreich CM. Physical activity and breast cancer: Review of the epidemiologic evidence and biologic mechanisms. Recent Results in Cancer Research. 2011;188:125-139.
Hansen J, Stevens RG. Case-control study of shift-work and breast cancer risk in Danish nurses: Impact of shift systems. European Journal of Cancer. 2012;48(11):1722-1729.
Pratt MA. Paradoxical roles for FOXA1 in anti-estrogen resistance and as a luminal differentiation factor in breast cancer. Gland Surgery. 2012;1(1):9-11.
Harvey SL, Khasraw M. Alternative targeted therapy for early Her2 positive breast cancer. Gland Surgery. 2013;2(1):42-45.
American Cancer Society. How is breast cancer treated [Internet]? Atlanta [acesso em jan 2018]. Disponível em: <http://www.cancer.org/cancer/breastcancer/detailedguide/breast-cancer-treating-general-info>.
Frenzel AP, Pastore CA, González MC. The influence of body composition on quality of life of patients with breast cancer. Nutrición Hospitalaria. 2013;28(5):1475–1482.
McDonald C, Bauer J, Capra S, Coll J. The muscle mass, omega-3, diet, exercise and lifestyle (MODEL) study - a randomised controlled trial for women who have completed breast cancer treatment. BMC Cancer. 2014;14(264):1-10.
Santilli V, Bernetti A, Mangone M, Paoloni M. Clinical definition of sarcopenia. Clinical Cases in Mineral and Bone Metabolism. 2014;11(3):177–180.
Anandavadivelan P, Brismar TB, Nilsson M, Johar AM, Martin L. Sarcopenic obesity: a probable risk factor for dose limiting toxicity during neo-adjuvant chemotherapy in oesophageal cancer patients. Clinical Nutrition. 2016;35(3):724–730.
Champ CE, Volek JS, Siglin J, Jin L, Simone NL. Weight gain, metabolic syndrome, and breast cancer recurrence: are dietary recommendations supported by the data? International Journal of Breast Cancer. 2012;2012(506868):1-9.
Cleary MP, Grossmann ME. Minireview: obesity and breast cancer: the estrogen connection. Endocrinology. 2009;150(6):2537–2542.
Rock CL, Flatt SW, Laughlin GA, Gold EB, Thomson CA, Natarajan L. Reproductive steroid hormones and recurrence-free survival in women with a history of breast cancer. Cancer Epidemiology, Biomarkers and Prevention. 2008;17(3):614–620.
Bayar MA, Antoun S, Lanoy E. Statistical approaches for evaluating body composition markers in clinical cancer research. Expert Review of Anticancer Therapy. 2017;17(4):311–318.
Carneiro IP, Mazurak VC, Prado CM. Clinical implications of sarcopenic obesity in cancer. Current Oncology Reports. 2016;18(10):62.
Dieli-Conwright CM, Parmentier JH, Sami N, Lee K, Spicer D, Mack WJ, et al. Adipose tissue inflammation in breast cancer survivors: effects of a 16-week combined aerobic and resistance exercise training intervention. Breast Cancer Research and Treatment. 2018;168(1):147-157.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. International Journal of Surgery. 2010;8(5):336–334.
Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses [Internet]. Ottawa: Ottawa Hospital Research Institute [acesso em mai 2018]. Disponível em: <http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp>.
Sterne JAC, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.
Brasil. Ministério da Saúde. Secretaria de Ciência, Tecnologia e Insumos Estratégicos. Departamento de Ciência e Tecnologia. Diretrizes Metodológicas: elaboração de revisão sistemática e meta-análise de estudos observacionais comparativos sobre fatores de risco e prognóstico [Internet]. Brasília, DF: Ministério da Saúde; 2014 [acesso em mai 2018]. Disponível em: <http://bvsms.saude.gov.br/bvs/ct/PDF/diretrizes_metodologias_estudos_observacionais.pdf>
Sterne JAC, Higgins JPT, Elbers RG, Reeves BC and the development group for ROBINS-I. Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I): detailed guidance [Internet]. 2016 [acesso em mai 2018]. Disponível em: <http://www.riskofbias.info/welcome/home>.
Akyol M, Alacacioglu A, Demir L, Kucukzeybek Y, Yildiz Y, Gumus Z, et al. The alterations of serum FGF-21 levels, metabolic and body composition in early breast cancer patients receiving adjuvante endocrine therapy. Cancer Biomarkers. 2017;18(4):441-449.
Dieli-Conwright CM, Wong L, Waliany S, Bernstein L, Salehian B, Mortimer JE. An Observational Study to Examine Changes in Metabolic Syndrome Components in Breast Cancer Patients Receiving Neoadjuvant or Adjuvant Chemotherapy. Cancer. 2016;122(17):2646–2653.
Iwase T, Sangai T, Nagashima T, Sakakibara M, Sakakibara J, Hayama S, et al. Impact of body fat distribution on neoadjuvant chemotherapy outcomes in advanced breast cancer patients. Cancer Medicine. 2016;5(1):41–48.
Cisneros KM, Romero JE, Torres AGG, Valencia ME, Estrada ROM, Ortiz OT, et al. Impacto del tratamiento antineoplásico en el estado nutricional en pacientes con cáncer de mama. Nutrición Hospitalaria. 2014;30(4):876-882.
Villaseñor A, Ballard-Barbash R, Baumgartner K, Baumgartner R, Bernstein L, McTiernan A, et al. Prevalence and prognostic effect of sarcopenia in breast cancer survivors: the HEAL Study. Journal of Cancer Survivorship. 2012;6(4):398–406.
Irwin ML, McTiernan A, Baumgartner RN, Baumgartner KB, Bernstein L, Gilliland FD, et al. Changes in body fat and weight after a breast cancer diagnosis: Influence of demographic, prognostic and lifestyle factors. Journal of Clinical Oncology. 2005;23(4):774–782.
Sheean PM, Hoskins K, Stolley M. Body composition changes in females treated for breast cancer: a review of the evidence. Breast Cancer Research and Treatment. 2012;135(3):663–680.
Gordon AM, Hurwitz S, Shapiro CL, LeBoff MS. Premature ovarian failure and body composition changes with adjuvant chemotherapy for breast cancer. Menopause. 2011;18(11):1244–1248.
Nissen MJ, Shapiro A, Swenson KK. Changes in weight and body composition in women receiving chemotherapy for breast cancer. Clinical Breast Cancer. 2011;11(1):52-60.
Vance V, Mourtzakis M, McCargar L, Hanning R. Weight gain in breast cancer survivors: prevalence, pattern and health consequences. Obesity Reviews. 2011;12(4):282–294.
Rock CL, Demark-Wahnefried W. Nutrition and survival after the diagnosis of breast cancer: a review of the evidence. Journal of Clinical Oncology. 2002;20(15):3302–3316.
Di Sebastiano KM, Mourtzakis M. A critical evaluation of body composition modalities used to assess adipose and skeletal muscle tissue in cancer. Applied Physiology, Nutrition, and Metabolism. 2012;37(5):811-821.
Demark-Wahnefried W, Peterson BL, Winer EP, Marks L, Aziz N, Marcom PK, et al. Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. Journal of Clinical Oncology. 2001;19(9):2381–2389.
Walshe JM, Denduluri N, Swain SM. Amenorrhea in premenopausal women after adjuvant chemotherapy for breast cancer. Journal of Clinical Oncology. 2006;24(36):5769–5779.
Wang Q, Hassager C, Ravn P, Wang S, Christiansen C. Total and regional body-composition changes in early postmenopausal women: age-related or menopause-related? The American Journal of Clinical Nutrition. 1994;60(6):843–848.
Maltais ML, Desroches J, Dionne IJ. Changes in muscle mass and strength after menopause. Journal of Musculoskeletal and Neuronal Interactions. 2009;9(4):186–197.
Barbat-Artigas S, Aubertin-Leheudre M. Menopausal transition and fat distribution. Menopause. 2013;20(4):370-371.
Demark-Wahnefried W, Platz EA, Ligibel JA, Blair CK, Courneya KS, Meyerhardt JA, et al. The role of obesity in cancer survival and recurrence. Cancer Epidemiology, Biomarkers e Prevention. 2012;21(8):1244–1259.
Messier V, Rabasa-Lhoret R, Barbat-Artigas S, Elishaa B, Karelis AD, Aubertin-Leheudrec M. Menopause and sarcopenia: a potential role for sex hormones. Maturitas. 2011;68(4):331–336.
Jubrias SA, Odderson IR, Esselman PC, Conley KE. Decline in isokinetic force with age: muscle cross-sectional area and specific force. Pflügers Archiv – European Journal of Physiology. 1997;434(3):246–253.
Costa CS, Del-Ponte B, Assunção MCF, Santos IS. Consumption of ultra-processed foods and body fat during childhood and adolescence: a systematic review. Public Health Nutrition. 2017;21(1):148–159.