Integration Between Biomechanical, Sensorial And Neurophysiological Factors Of Postural Control: a Narrative Review
Por Edson Gonsales da Cruz Filho (Autor), Victor Hugo Alves Okazaki (Autor), Eduardo Rafael da Veiga Neto (Autor), Eduardo Vignoto Fernandes (Autor).
Resumo
Postural control (PC) represents a basic aspect in the life of individuals and requires complex interaction between several factors that can be divided into extrinsic and intrinsic factors. In the case of the extrinsic factors, an example is the force of gravity, which acts on all bodies and, due to the unequal distribution of mass and the shape of the body, can interfere in the center of mass (CoM) of the body. Like the CoM, the center of pressure (CoP) is accurate to detect changes in PC. A fall occurs when the CoM is very distant from the support base of a body. This regulation is performed by the intrinsic factors. Intrinsic factors are those related to the neurophysiological and sensory components of the individual, e.g., the sensory and neural systems. The sensory systems that capture specific stimuli and send them to the CNS are the visual, vestibular, and somatosensory systems. The visual system captures information from the environment to aid in spatial orientation. The vestibular system informs about linear and angular accelerations of the head, and the somatosensory system detects touch stimuli, body position, temperature, and pain. The neurophysiological aspects include structures that act directly and indirectly, for example, the cerebellum and the hypothalamus, respectively. Thus, it is concluded that PC is a complex skill that involves the integration of cortical and subcortical structures, and sensory systems, which are constantly exposed to various forces acting on the body. Postural control (PC) represents a basic aspect in the life of individuals and requires complex interaction between several factors that can be divided into extrinsic and intrinsic factors. In the case of the extrinsic factors, an example is the force of gravity, which acts on all bodies and, due to the unequal distribution of mass and the shape of the body, can interfere in the center of mass (CoM) of the body. Like the CoM, the center of pressure (CoP) is accurate to detect changes in PC. A fall occurs when the CoM is very distant from the support base of a body. This regulation is performed by the intrinsic factors. Intrinsic factors are those related to the neurophysiological and sensory components of the individual, e.g., the sensory and neural systems. The sensory systems that capture specific stimuli and send them to the CNS are the visual, vestibular, and somatosensory systems. The visual system captures information from the environment to aid in spatial orientation. The vestibular system informs about linear and angular accelerations of the head, and the somatosensory system detects touch stimuli, body position, temperature, and pain. The neurophysiological aspects include structures that act directly and indirectly, for example, the cerebellum and the hypothalamus, respectively. Thus, it is concluded that PC is a complex skill that involves the integration of cortical and subcortical structures, and sensory systems, which are constantly exposed to various forces acting on the body.