Resumo

O movimento humano é um fenômeno complexo que pode ser estudado por diversas áreas. A Biomecânica atua junto a outras áreas do conhecimento para buscar uma melhor compreensão do ser humano em movimento. A análise cinemática muitas vezes gera dados discretos que necessitam do ajuste de uma função contínua para representá-Ios convenientemente. Se os dados estão na forma de série de tempo, a família de curvas assim caracterizadas, que possuem uma certa distribuição de probabilidades, é chamada de processo estocástico. Suavizar os dados de uma série temporal que possuem dependência estocástica entre os valores próximos consiste em deixar os dados indicarem qual a forma da curva ajustada. Os procedimentos não paramétricos, como, por exemplo, os ajustes por partes, permitem que o dado a ser suavizado sofra influência grande dos dados próximos e nenhuma dos dados mais afastados. A literatura registra várias funções para a suavização de dados discretos. O objetivo deste trabalho é apresentar a metodologia para o ajuste de uma função não paramétrica ponderada local robusta denominada loess para a suavização de dados biomecânicos discretos a fim de descrever continuamente movimentos humanos. A metodologia consiste em escolher o tamanho da janela (parâmetro f) dentro da qual é realizada a regressão ponderada, a função peso a ser utilizada (neste caso a função tricúbica), o grau do polinômio ajustado naquela região (segundo grau para este trabalho) e comparar os valores dos resíduos com a estimação biquadrática para uma possível reponderação da regressão e exclusão dos outliers da mesma. Essa janela move-se de modo a suavizar cada ponto do vetor de dados, cujo conjunto é interpolado por uma função contínua com derivadas contínuas até segunda ordem. Nos pontos próximos das extremidades, a janela assume uma forma assimétrica com os dados mais distantes participando da suavização dos pontos nas extremidades, mas a ponderação tricúbica resolve este problema. São apresentados quatro exemplos de aplicação da função loess para suavizar dados biomecânicos: o movimento angular da perna esquerda de um garoto durante um ciclo da corrida, o movimento horizontal do tornozelo direito de um sujeito durante a realização de um chute no futebol com a bola parada, o deslocamento horizontal de um goleiro durante a realização de defesas em um teste específico de treinamento e a movimentação de um jogador profissional de futebol durante a realização de uma partida oficial. Em todos esses casos, coube ao pesquisador escolher o parâmetro de suavização (f) que fornecesse uma suavização adequada, comprovada pela análise dos resíduos, pela análise da autocorrelação dos dados e pela análise do comportamento das derivadas. A função loess mostrou-se muito apropriada na suavização de dados da cinemática do movimento humano, principalmente devido ao seu procedimento robusto para identificar os outliers e corrigir a ponderação dos dados.

Acessar Arquivo