Resumo

Existem inúmeros tipos de dispositivos médicos portáteis de monitoramento de frequência cardíaca usados ​​de diversas maneiras por praticantes de exercícios de lazer, atletas profissionais e pacientes com doenças crônicas. Quase todos os monitores de frequência cardíaca usados ​​atualmente são capazes de detectar arritmias, mas esse recurso não é amplamente conhecido ou usado entre seus milhões de consumidores. Os objetivos deste artigo foram os seguintes: (1) analisar os monitores de frequência cardíaca desportivos atualmente disponíveis e avaliar as suas vantagens e desvantagens em termos de monitorização da frequência cardíaca e do ritmo em atletas de resistência; (2) discutir que tipos de monitores de frequência cardíaca comerciais actualmente disponíveis são mais convenientes/ajustáveis ​​às necessidades dos diferentes consumidores (incluindo adultos ocasionalmente activos e pacientes cardíacos), tendo em conta os potenciais riscos para a saúde, especialmente perturbações do ritmo cardíaco relacionadas com treinamento de resistência; (3) sugerir um conjunto de recursos de design “ótimos” para dispositivos vestíveis inteligentes da próxima geração, com base na opinião consensual de um painel de especialistas de atletas, treinadores e médicos de medicina esportiva. Noventa e dois especialistas com 20 anos ou mais, envolvidos diariamente em esportes de resistência, foram convidados a participar de discussões de construção de consenso, incluindo 56 corredores de longa distância, 18 ciclistas, nove treinadores e nove médicos (especialistas em medicina esportiva, cardiologistas e médicos de medicina familiar). O consenso geral endossado por estes especialistas indica que o monitor de frequência cardíaca desportivo “ótimo” deve ser um dispositivo de peça única do tipo smartwatch (com dois ou mais eletrodos), com recursos integrados de smartphone, e capaz de coletar e transmitir continuamente dados sem exibindo artefatos. Deve registrar continuamente pelo menos um eletrocardiograma de derivação única, enviar um alerta após uma queda inesperada, ter peso razoável, ter um preço acessível e ser fácil de usar.

References

  1. Heart rate monitor. https://en.wikipedia.org/wiki/Heart_rate_monitor. Accessed 12 Dec 2022.

  2. de Sá FA, Lopes AJ. Pulse waveform analysis as a bridge between pulse examination in Chinese medicine and cardiology. Chin J Integr Med. 2013;19:307–14. https://doi.org/10.1007/s11655-013-1412-z.

    Article  Google Scholar 

  3. Pulse watch. AF: atrial fibrillation. https://en.wikipedia.org/wiki/Pulse_watch. Accessed 12 Dec 2022.

  4. Laukkanen RM, Virtanen PK. Heart rate monitors: state of the art. J Sports Sci. 1998;16;Suppl.:S3-7. https://doi.org/10.1080/026404198366920.

    Article  PubMed  Google Scholar 

  5. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Bio Med Eng. 1985;32:230–6. https://doi.org/10.1109/TBME.1985.325532.

    Article  CAS  Google Scholar 

  6. Chow HW, Yang CC. Accuracy of optical heart rate sensing technology in wearable fitness trackers for young and older adults: validation and comparison study. JMIR mHealth uHealth. 2020;8: e14707. https://doi.org/10.2196/14707.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aroganam G, Manivannan N, Harrison D. Review on wearable technology sensors used in consumer sport applications. Sensors (Basel). 1983;2019(19):31035333. https://doi.org/10.3390/s19091983.

    Article  Google Scholar 

  8. Phan D, Siong LY, Pathirana PN Seneviratne. Smartwatch: performance evaluation for long-term heart rate monitoring. In: International Symposium on Bioelectronics and Bioinformatics (ISBB); 2015: p. 144–7.

  9. World’s first smart heart wearable. https://uk.fourthfrontier.com/products/frontier-x. Accessed 12 Dec 2022.

  10. Heart Rate Variability (HRV): what is it, and why does the Apple Watch track it? Available from: https://www.imore.com/heart-rate-variability-hrv-what-it-and-why-does-apple-watch-track-it. Accessed 12 Dec 2022.

  11. Svennberg E, Tjong F, Goette A, Akoum N, Di Biase L, Bordachar P, et al. How to use digital devices to detect and manage arrhythmias: an EHRA practical guide. EP Europace. 2022;24:979–1005. https://doi.org/10.1093/europace/euac038 (https://doi.org/10.1093/europace/euac038. Erratum in: EP Europace, 2022;24(6):1005, https://doi.org/10.1093/europace/euac067 and EP Europace. 2023;25(2):486, https://doi.org/10.1093/europace/euac227).

    Article  Google Scholar 

  12. Xintarakou A, Sousonis V, Asvestas D, Vardas PE, Tzeis S. Remote cardiac rhythm monitoring in the era of smart wearables: present assets and future perspectives. Front Cardiovasc Med. 2022;9: 853614. https://doi.org/10.3389/fcvm.2022.853614.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blazey P, Crossley KM, Ardern CL, van Middelkoop M, Scott A, Khan KM. It is time for consensus on ‘consensus statements.’ Br J Sports Med. 2022;56(6):306–7. https://doi.org/10.1136/bjsports-2021-104578.

    Article  PubMed  Google Scholar 

  14. Jandhyala R. Delphi, non-RAND modified Delphi, RAND/UCLA appropriateness method and a novel group awareness and consensus methodology for consensus measurement: a systematic literature review. Curr Med Res Opin. 2020;36(11):1873–87. https://doi.org/10.1080/03007995.2020.1816946.

    Article  PubMed  Google Scholar 

  15. Beighton D. Consensus statements. Caries Res. 2017;51(5):I–II. https://doi.org/10.1159/000480305.

    Article  PubMed  Google Scholar 

  16. Agree II. https://www.agreetrust.org/agree-ii/. Accessed 7 Apr 2023.

  17. Achten J, Jeukendrup AE. Heart rate monitoring: applications and limitations. Sports Med. 2003;33:517–38. https://doi.org/10.2165/00007256-200333070-00004.

    Article  PubMed  Google Scholar 

  18. Gajda R, Gajda J, Czuba M, Gębska-Kuczerowska A, Knechtle B. Heart rate monitors used by athletes : from gadget to medical equipment. A decade of own observations. Med Res. 2021;6:64–70. https://doi.org/10.5603/MRJ.a2021.0010.

    Article  Google Scholar 

  19. Gajda R, Biernacka EK, Drygas W. The problem of arrhythmias in endurance athletes: Are heart rate monitors valuable tools for diagnosing arrhythmias? Horizons in world cardiovascular research. New York: Nova Science Publishers, Inc.; 2018. p. 1–64.

    Google Scholar 

  20. Gajda R, Kowalik E, Rybka S, Rębowska E, Śmigielski W, Nowak M, et al. Evaluation of the heart function of swimmers subjected to exhaustive repetitive endurance efforts during a 500-km relay. Front Physiol. 2019;10:296. https://doi.org/10.3389/fphys.2019.00296.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lu G, Yang F, Taylor JA, Stein JF. A comparison of photoplethysmography and ECG recording to analyse heart rate variability in healthy subjects. J Med Eng Technol. 2009;33:634–41. https://doi.org/10.3109/03091900903150998.

    Article  CAS  PubMed  Google Scholar 

  22. Castaneda D, Esparza A, Ghamari M, Soltanpur C, Nazeran H. A review on wearable photoplethysmography sensors and their potential future applications in health care. Int J Biosens Bioelectron. 2018;4:195–202. https://doi.org/10.15406/ijbsbe.2018.04.00125.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Książczyk M, Dębska-Kozłowska A, Warchoł I, Lubiński A. Enhancing healthcare access-smartphone apps in arrhythmia screening: viewpoint. JMIR mHealth uHealth. 2021;9: e23425. https://doi.org/10.2196/23425.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Navalta JW, Ramirez GG, Maxwell C, Radzak KN, McGinnis GR. Validity and reliability of three commercially available smart sports bras during treadmill walking and running. Sci Rep. 2020;10:7397. https://doi.org/10.1038/s41598-020-64185-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chest strap vs wrist heart rate monitor: Which is more accurate? Chest strap vs wrist heart rate monitor: which is more accurate? Cardio Critic, Beijing, China. https://www.cyclingnews.com/features/wrist-vs-chest-strap-heart-rate-monitor-which-is-better-for-you/. Accessed 12 Dec 2022.

  26. ECG vs PPG for heart rate monitoring: which is best? Available from: https://neurosky.com/2015/01/ecg-vs-ppg-for-heart-rate-monitoring-which-is-best/. Accessed 12 Dec 2022.

  27. Tamura T, Maeda Y, Sekine M, Yoshida M. Wearable photoplethysmographic sensors: past and present. Electronics. 2014;3:282–302. https://doi.org/10.3390/electronics3020282.

    Article  Google Scholar 

  28. Zhang Y, Liu B, Zhang. Combining ensemble empirical mode decomposition with spectrum subtraction technique for heart rate monitoring using wrist-type photoplethysmography. Biomed Signal Process Control. 2015;21:119–25.

    Article  Google Scholar 

  29. Ahmad Tarar A, Mohammad U, Srivastava KS. Wearable skin sensors and their challenges: a review of transdermal, optical, and mechanical sensors. Biosensors. 2020;10:56. https://doi.org/10.3390/bios10060056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Celka P, Verjus C, Vetter R. Motion resistant earphone located infrared based heart rate measurement device. In: Proceedings of the 2nd International Conference on Biomedical Engineering; 16–18 February 2004; p. 582–5; Innsbruck, Austria.

  31. Cassirame J, Vanhaesebrouck R, Chevrolat S, Mourot L. Accuracy of the Garmin 920 XT HRM to perform HRV analysis. Australas Phys Eng Sci Med. 2017;40:831–9. https://doi.org/10.1007/s13246-017-0593-8.

    Article  PubMed  Google Scholar 

  32. Isakadze N, Martin SS. How useful is the smartwatch ECG? Trends Cardiovasc Med. 2020;30:442–8. https://doi.org/10.1016/j.tcm.2019.10.010.

    Article  PubMed  Google Scholar 

  33. Romagnoli S, Sbrollini A, Colaneri M, et al. Initial investigation of athletes’ electrocardiograms acquired by wearable sensors during the pre-exercise phase. Open Biomed Eng J. 2021;15(1):37–44. https://doi.org/10.2174/1874120702115010037.

    Article  Google Scholar 

  34. Gajda R, Biernacka EK, Drygas W. Atrial fibrillation in athletes: easier to recognize today. Res Inves Sports Med. 2019. https://doi.org/10.31031/RISM.2019.05.000618.

    Article  Google Scholar 

  35. Singh M, Rao R, Gupta S. KardiaMobile for ECG monitoring and arrhythmia diagnosis. Am Fam Phys. 2020;102:562–4.

    Google Scholar 

  36. Phan DT, Nguyen CH, Nguyen TDP, Tran LH, Park S, Choi J, et al. A flexible, wearable, and wireless biosensor patch with Internet of medical things applications. Biosensors (Basel). 2022;12(139):35323409. https://doi.org/10.3390/bios12030139.

    Article  Google Scholar 

  37. Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. Nat Rev Mater. 2022;7(11):887–907. https://doi.org/10.1038/s41578-022-00460-x. (Epub 2022 Jul 22. PMID: 35910814; PMCID: PMC9306444).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Romagnoli S, Ripanti F, Morettini M, Burattini L, Sbrollini A. Wearable and portable devices for acquisition of cardiac signals while practicing sport: a scoping review. Sensors. 2023;23:3350. https://doi.org/10.3390/s23063350.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Take an ECG with the ECG app on Apple Watch. https://support.apple.com/en-us/HT208955. Accessed 12 Dec 2022.

  40. Apple Watch, with some maneuvering, can deliver 12-lead ECG. https://www.medpagetoday.com/cardiology/arrhythmias/83583. Accessed 12 Dec 2022.

  41. ECG app and irregular heart rhythm notification available today on Apple Watch. https://www.apple.com/newsroom/2018/12/ecg-app-and-irregular-heart-rhythm-notification-available-today-on-apple-watch/. Accessed 12 Dec 2022.

  42. Parak J, Korhonen I. Evaluation of wearable consumer heart rate monitors based on photopletysmography. In: Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3670–3. https://doi.org/10.1109/EMBC.2014.6944419

  43. Navalta JW, Montes J, Bodell NG, Salatto RW, Manning JW, DeBeliso M. Concurrent heart rate validity of wearable technology devices during trail running. PLoS ONE. 2020;15: e0238569. https://doi.org/10.1371/journal.pone.0238569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van der Velden RMJ, Verhaert DVM, Hermans ANL, Duncker D, Manninger M, Betz K, et al. The photoplethysmography dictionary: practical guidance on signal interpretation and clinical scenarios from TeleCheck-AF. Eur Heart J Digit Health. 2021;2:363–73. https://doi.org/10.1093/ehjdh/ztab050.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gajda R. Heart rate monitor instead of ablation? Atrioventricular nodal re-entrant tachycardia in a leisure-time triathlete: 6-year follow-up. Diagnostics (Basel). 2020;10:391. https://doi.org/10.3390/diagnostics10060391.

    Article  PubMed  Google Scholar 

  46. 9 of the best heart rate monitors of 2022. https://www.healthline.com/health/fitness/heart-rate-monitor#basics. Accessed 12 Dec 2022.

  47. Nowak M, Gajda R, Drygas W, Rębowska E, Dziankowska-Zaborszczyk E, Kwaśniewska M. Effect of repeated endurance exercise on intraocular pressure in healthy subjects: a prospective pilot study based on a 500-km swim relay. Klin Oczna/Acta Ophthalmol Polonica. 2020;2020:54–9. https://doi.org/10.5114/ko.2020.96557.

    Article  Google Scholar 

  48. Gajda R. Relationship between arrhythmias and level activity of athlete’s: role of HRMs. Examines Physiol Rehab. 2019. https://doi.org/10.31031/EPMR.2019.02.000548.

    Article  Google Scholar 

  49. Gajda R, Drygas W. Ventricular arrhythmias in endurance athletes: are heart rate monitors suitable tools for their diagnostics? Res Invest Sports Med. 2019;5:447–50. https://doi.org/10.31031/RISM.2019.05.000622.

    Article  Google Scholar 

  50. Walker J, Calkins H, Nazarian S. Evaluation of cardiac arrhythmia among athletes. Am J Med. 2010;123:1075–81. https://doi.org/10.1016/j.amjmed.2010.05.008.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wiedermann CJ, Becker AE, Hopferwieser T, Mühlberger V, Knapp E. Sudden death in a young competitive athlete with Wolff-Parkinson-White syndrome. Eur Heart J. 1987;8:651–5. https://doi.org/10.1093/oxfordjournals.eurheartj.a062337.

    Article  CAS  PubMed  Google Scholar 

  52. Miljoen H, Ector J, Garweg C, Saenen J, Huybrechts W, Sarkozy A, et al. Differential presentation of atrioventricular nodal re-entrant tachycardia in athletes and non-athletes. Europace. 2019;21:944–9. https://doi.org/10.1093/europace/euz001.

    Article  PubMed  Google Scholar 

  53. Turagam MK, Flaker GC, Velagapudi P, Vadali S, Alpert MA. Atrial fibrillation in athletes: Pathophysiology, clinical presentation, evaluation and management. J Atr Fibrillation. 2015;8:1309. https://doi.org/10.4022/jafib.1309.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aizer A, Gaziano JM, Cook NR, Manson JE, Buring JE, Albert CM. Relation of vigorous exercise to risk of atrial fibrillation. Am J Cardiol. 2009;103:1572–7. https://doi.org/10.1016/j.amjcard.2009.01.374.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Maron BJ, Zipes DP. Introduction: eligibility recommendations for competitive athletes with cardiovascular abnormalities: general considerations. In: J Am Coll Cardiol 36th Bethesda, MD Conference: eligibility recommendations for competitive athletes with cardiovascular abnormalities. 2005;45:1318–21. https://doi.org/10.1016/j.jacc.2005.02.006.

  56. Pelliccia A, Fagard R, Bjørnstad HH, Anastassakis A, Arbustini E, Assanelli D, et al. Recommendations for competitive sports participation in athletes with cardiovascular disease: a consensus document from the Study Group of Sports Cardiology of the Working Group of Cardiac Rehabilitation and Exercise Physiology and the Working Group of Myocardial and Pericardial Diseases of the European Society of Cardiology. Eur Heart J. 2005;26:1422–45. https://doi.org/10.1093/eurheartj/ehi325.

    Article  PubMed  Google Scholar 

  57. Koene RJ, Adkisson WO, Benditt DG. Syncope and the risk of sudden cardiac death: evaluation, management, and prevention. J Arrhythm. 2017;33:533–44. https://doi.org/10.1016/j.joa.2017.07.005.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Waks JW, Fein AS, Das S. Wide complex tachycardia recorded with a smartphone cardiac rhythm monitor. JAMA Intern Med. 2015;175:437–9. https://doi.org/10.1001/jamainternmed.2014.7586.

    Article  PubMed  Google Scholar 

  59. Ausland Å, Sandberg EL, Jortveit J, Seiler S. Heart rhythm assessment in elite endurance athletes: a better method? Front Sports Act Living. 2022;4: 937525. https://doi.org/10.3389/fspor.2022.937525.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gajda R. Extreme bradycardia and bradyarrhythmias at athletes: what will technology development bring as a help to diagnosis them? RISM. 2019. https://doi.org/10.31031/RISM.2019.05.000617.

    Article  Google Scholar 

  61. Thompson PD. Cardiovascular adaptations to marathon running. Sports Med. 2007;37:44. https://doi.org/10.2165/00007256-200737040-00045.

    Article  Google Scholar 

  62. D’Souza A, Bucchi A, Johnsen AB, Logantha SJ, Monfredi O, Yanni J, et al. Exercise training reduces resting heart rate via downregulation of the funny channel HCN4. Nat Commun. 2014;5:3775. https://doi.org/10.1038/ncomms4775.

    Article  CAS  PubMed  Google Scholar 

  63. George KP, Wolfe LA, Burggraf GW. The ‘athletic heart syndrome.’ Sports Med. 1991;11:300–31. https://doi.org/10.2165/00007256-199111050-00003.

    Article  CAS  PubMed  Google Scholar 

  64. D’Souza A, Sharma S, Boyett MR. CrossTalk opposing view: bradycardia in the trained athlete is attributable to a downregulation of a pacemaker channel in the sinus node. J Physiol. 2015;593:1749–51. https://doi.org/10.1113/jphysiol.2014.284356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fourth Frontier. https://fourthfrontier.com. Accessed 12 Dec 2022.

  66. Gajda R, Knechtle B, Gębska-Kuczerowska A, Gajda J, Stec S, Krych M, et al. Amateur athlete with sinus arrest and severe bradycardia diagnosed through a heart rate monitor: a six-year observation: the necessity of shared decision-making in heart rhythm therapy management. Int J Environ Res Public Health. 2022;19(10367):36012002. https://doi.org/10.3390/ijerph191610367.

    Article  Google Scholar 

  67. Baggish AL, Wood MJ. Athlete’s heart and cardiovascular care of the athlete: scientific and clinical update. Circulation. 2011;123:2723–35. https://doi.org/10.1161/CIRCULATIONAHA.110.981571.

    Article  PubMed  Google Scholar 

  68. Wasfy MM, Hutter AM, Weiner RB. Sudden cardiac death in athletes. Methodist Debakey CardioVasc J. 2016;12:76–80. https://doi.org/10.14797/mdcj-12-2-76.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gajda R. Is continuous ECG recording on heart rate monitors the most expected function by endurance athletes, coaches, and doctors? Diagnostics (Basel). 2020;10:867. https://doi.org/10.3390/diagnostics10110867.

    Article  PubMed  Google Scholar 

  70. Gajda R, Drygas W, Gajda J, Kiper P, Knechtle B, Kwaśniewska M, et al. Exercise-induced arrhythmia or Munchhausen syndrome in a marathon runner? Diagnostics (Basel). 2023;13(18):2917. https://doi.org/10.3390/diagnostics13182917.

  71. Seok D, Lee S, Kim M, Cho J, Kim C. Motion artifact removal techniques for wearable EEG and PPG sensor systems. In: Front Electron. 2021. Sec. Wearable Electronics;2. https://doi.org/10.3389/felec.2021.685513.

  72. LIFESIGNALS wearable biosensors. The new generation of health monitoring. https://lifesignals.com/wearable-biosensors/patient-faqs/. Accessed 12 Dec 2022.

  73. Frontier. X review: train with confidence you are not overstraining your heart. https://gadgetsandwearables.com/2022/02/11/frontier-x-review-train-with-confidence-you-are-not-over-straining-your-heart/. Accessed 12 Dec 2022.

  74. Cotechini V, Belli A, Palma L, Morettini M, Burattini L, Pierleoni P. A dataset for the development and optimization of fall detection algorithms based on wearable sensors. Data Brief. 2019;23: 103839. https://doi.org/10.1016/j.dib.2019.103839.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gajda R. Commotio cordis at athletes: under recognized problem. 2019. RISM. 2019;5:3. https://doi.org/10.31031/RISM.2019.05.000615.

    Article  Google Scholar 

  76. Maron BJ, Estes NA 3rd. Commotio cordis. N Engl J Med. 2010;362:917–27. https://doi.org/10.1056/NEJMra0910111.

    Article  CAS  PubMed  Google Scholar 

  77. Gillinov S, Etiwy M, Wang R, Blackburn G, Phelan D, Gillinov AM, et al. Variable accuracy of wearable heart rate monitors during aerobic exercise. Med Sci Sports Exerc. 2017;49:1697–703. https://doi.org/10.1249/MSS.0000000000001284.

    Article  PubMed  Google Scholar 

  78. Gajda R, Biernacka EK, Drygas W. Are heart rate monitors valuable tools for diagnosing arrhythmias in endurance athletes? Scand J Med Sci Sports. 2018;28:496–516. https://doi.org/10.1111/sms.12917.

    Article  CAS  PubMed  Google Scholar 

  79. Finel J, Branan KL, Rodriguez AJ, Boonya-Ananta T, Ajmal, Ramella-Roman JC, et al. Sources of inaccuracy in photoplethysmography for continuous cardiovascular monitoring. Biosensors (Basel). 2011;11(126):33923469. https://doi.org/10.3390/bios11040126.

    Article  Google Scholar 

  80. Day SM, Thompson PD. Cardiac risks associated with marathon running. Sports Health. 2010;2:301–6. https://doi.org/10.1177/1941738110373066.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Guasch E, Mont L, Sitges M. Mechanisms of atrial fibrillation in athletes: what we know and what we do not know. Neth Heart. 2018;26:133–45. https://doi.org/10.1007/s12471-018-1080-x.

    Article  CAS  Google Scholar 

  82. Gajda R, Klisiewicz A, Matsibora V, Piotrowska-Kownacka D, Biernacka EK. Heart of the World’s top ultramarathon runner: not necessarily much different from normal. Diagnostics (Basel). 2020;10:73. https://doi.org/10.3390/diagnostics10020073.

    Article  CAS  PubMed  Google Scholar 

  83. Gajda R, Walasek P, Jarmuszewski M. Right knee: the weakest point of the best ultramarathon runners of the world? A case study. Int J Environ Res Public Health. 2020;17(5955):32824529. https://doi.org/10.3390/ijerph17165955.

    Article  Google Scholar 

  84. Gajda R, Samełko A, Czuba M, Piotrowska-Nowak A, Tońska K, Żekanowski C, et al. To be a champion of the 24-h ultramarathon Race. If not the heart … mosaic theory? Int J Environ Res Public Health. 2021;18:2371. https://doi.org/10.3390/ijerph18052371.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mueller M, Chimenti R, Merkle S, Frey-Law L. Accelerometry analysis options produce large differences in lifestyle physical activity measurement. Physiol Meas. 2020;41: 065006. https://doi.org/10.1088/1361-6579/ab94d4.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Medical Advisory Secretariat. Use of automated external defibrillators in cardiac arrest: an evidence-based analysis. Ont Health Technol Assess Ser. 2005;5:1–29.

    PubMed Central  Google Scholar 

  87. Rho RW, Page RL. The automated external defibrillator. J Cardiovasc Electrophysiol. 2007;18:896–9. https://doi.org/10.1111/j.1540-8167.2007.00822.x.

    Article  PubMed  Google Scholar 

  88. Krych M, Biernacka EK, Ponińska J, Kukla P, Filipecki A, Gajda R, et al. Andersen-Tawil syndrome: clinical presentation and predictors of symptomatic arrhythmias: possible role of polymorphisms K897T in KCNH2 and H558R in SCN5A gene. J Cardiol. 2017;70:504–10. https://doi.org/10.1016/j.jjcc.2017.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Jagodzińska M, Szperl M, Ponińska J, Kosiec A, Gajda R, Kukla P, et al. Coexistence of Andersen-Tawil syndrome with polymorphisms in hERG1 gene (K897T) and SCN5A gene (H558R) in one family. Ann Noninvasive Electrocardiol. 2016;21:189–95. https://doi.org/10.1111/anec.12283.

    Article  PubMed  Google Scholar 

  90. Płoszczyca K, Czuba M, Chalimoniuk M, Gajda R, Baranowski M. Red blood cell 2,3-diphosphoglycerate decreases in response to a 30 km time trial under hypoxia in cyclists. Front Physiol. 2021;12: 670977. https://doi.org/10.3389/fphys.2021.670977.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Steele J, Androulakis-Korakakis P, Carlson L, Williams D, Phillips S, Smith D, et al. The impact of coronavirus (COVID-19) related public-health measures on training behaviours of individuals previously participating in resistance training: a cross-sectional survey study. Sports Med. 2021;51:1561–80. https://doi.org/10.1007/s40279-021-01438-5.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Timpka T. Sports health during the SARS-Cov-2 pandemic. Sports Med. 2020;50:1413–6. https://doi.org/10.1007/s40279-020-01288-7.

Acessar