Resumo

The explosion of data, with large datasets that are available for analysis, has affected virtually every aspect of our lives. The sports industry has not been immune to these developments. In this article, we provide examples of three types of data-driven analyses that have been performed in the domain of sport: (a) field-level analysis focused on the behavior of athletes, coaches, and referees; (b) analysis of management and policymakers’ decisions; and (c) analysis of the literature that uses sports data to address various questions in the fields of economics and psychology.

References

  1. Alamar, B.C.: Sports Analytics—A Guide for Coaches, Managers, and Other Decision Makers. Columbia University Press, West Sussex (2013)

    Book  Google Scholar 

  2. Anderson, C., Sally, D.: The Numbers Game. Why Everything You Know About Soccer is Wrong (2013)

  3. Apesteguia, J., Palacios-Huerta, I.: Psychological pressure in competitive environments: evidence from a randomized natural experiment. Am. Econ. Rev. 100, 2548–2564 (2010)

    Article  Google Scholar 

  4. Azar, O.H., Bar-Eli, M.: Do soccer players play the mixed-strategy Nash equilibrium? Appl. Econ. 43, 3591–3601 (2011)

    Article  Google Scholar 

  5. Baade, R.A., Matheson, V.A.: Going for the gold: the economics of the Olympics. J. Econ. Perspect. 30, 201–218 (2016)

    Article  Google Scholar 

  6. Bagić Babac, M., Podobnik, V.: A sentiment analysis of who participates, how and why, at social media sport websites: how differently men and women write about football. Online Inf. Rev. 40, 814–833 (2016)

    Article  Google Scholar 

  7. Bar-Eli, M., Avugos, S., Raab, M.: Twenty years of “hot hand” research: review and critique. Psychol. Sport Exerc. 7, 525–553 (2006)

    Article  Google Scholar 

  8. Bar-Eli, M., Azar, O.H., Ritov, I., Keidar-Levin, Y., Schein, G.: Action bias among elite soccer goalkeepers: the case of penalty kicks. J. Econ. Psychol. 28, 606–621 (2007)

    Article  Google Scholar 

  9. Bhandari, I., Colet, E., Parker, J., Pines, Z., Pratap, R., Ramanujam, K.: Advanced scout: data mining and knowledge discovery in NBA data. Data Min. Knowl. Discov. 1, 121–125 (1997)

    Article  Google Scholar 

  10. Billings, S.B., Holladay, J.S.: Should cities go for the gold? The long-term impacts of hosting the Olympics. Econ. Inq. 50, 754–772 (2012)

    Article  Google Scholar 

  11. Bocskocsky, A., Ezekowitz, J., Stein, C.: The hot hand: a new approach to an old “fallacy”. In: Proceedings of the 8th MIT Sloan Sport Analytics Conference (2014)

  12. Borghesi, R.: Allocation of scarce resources: insight from the NFL salary cap. J. Econ. Bus. 60, 536–550 (2008)

    Article  Google Scholar 

  13. Braun, S., Schmidt, U.: The gambler’s fallacy in penalty shootouts. Curr. Biol. 25, R597–R598 (2015)

    Article  Google Scholar 

  14. Buraimo, B., Simmons, R.: Do sports fans really value uncertainty of outcome? Evidence from the English Premier League. Int. J. Sport Finance 3, 146 (2008)

    Google Scholar 

  15. Cao, L.: Data science: a comprehensive overview. ACM Comput. Surv. (CSUR) 50, 43 (2017)

    Article  Google Scholar 

  16. Chiappori, P.A., Levitt, S., Groseclose, T.: Testing mixed-strategy equilibria when players are heterogeneous: the case of penalty kicks in soccer. Am. Econ. Rev. 92, 1138–1151 (2002)

    Article  Google Scholar 

  17. Constantinou, A.C., Fenton, N.E., Neil, M.: Profiting from an inefficient Association Football gambling market: prediction, risk and uncertainty using Bayesian networks. Knowl. Based Syst. 50, 60–86 (2013)

    Article  Google Scholar 

  18. Constantinou, A., Fenton, N.O.R.M.A.N.: Towards smart-data: improving predictive accuracy in long-term football team performance. Knowl. Based Syst. 124, 93–104 (2017)

    Article  Google Scholar 

  19. Costa, G.B., Huber, M.R., Saccoman, J.T.: Understanding Sabermetrics: An Introduction to the Science of Baseball Statistics. McFarland (2007)

  20. Cox, A.: Spectator demand, uncertainty of results, and public interest: evidence from the English Premier League. J. Sports Econ. 1527002515619655 (2015)

  21. Davenport, T.H.: Analytics in sports: the new science of winning. Int. Inst. Anal. 2, 1–28 (2014)

    Google Scholar 

  22. Dietl, H.M., Lang, M., Werner, S.: Corruption in professional sumo: an update on the study of Duggan and Levitt. J. Sports Econ. 11, 383–396 (2010)

    Article  Google Scholar 

  23. Dohmen, T.J.: The influence of social forces: evidence from the behavior of football referees. Econ. Inq. 46, 411–424 (2008)

    Article  Google Scholar 

  24. Duggan, M., Levitt, S.D.: Winning isn’t everything: corruption in sumo wrestling. Am. Econ. Rev. 92, 1594–1605 (2002)

    Article  Google Scholar 

  25. Franks, I., Hughes, M.: Notational Analysis of Sport: Systems for Better Coaching and Performance in Sport. Routledge, London (2004)

    Google Scholar 

  26. Fried, G., Mumcu, C. (eds.): Sport Analytics: A Data-Driven Approach to Sport Business and Management. Taylor & Francis, New York (2016)

    Google Scholar 

  27. Garicano, L., Palacios-Huerta, I., Prendergast, C.: Favoritism under social pressure. Rev. Econ. Stat. 87, 208–216 (2005)

    Article  Google Scholar 

  28. Gilovich, T., Vallone, R., Tversky, A.: The hot hand in basketball: on the misperception of random sequences. Cogn. Psychol. 17, 295–314 (1985)

    Article  Google Scholar 

  29. Goldsberry, K.: CourtVision: New visual and spatial analytics for the NBA MIT Sloan Sports Analytics Conference. In: MIT Sloan Sports Analytics Conference (2012)

  30. Hughes, M., Hughes, M.T., Behan, H.: The evolution of computerised notational analysis through the example of racket sports. Int. J. Sports Sci. Eng. 1, 3–28 (2007)

    Google Scholar 

  31. Kahneman, D.: Thinking, Fast and Slow. Macmillan, London (2011)

    Google Scholar 

  32. Kahneman, D., Miller, D.T.: Norm theory: comparing reality to its alternatives. Psychol. Rev. 93, 136–153 (1986)

    Article  Google Scholar 

  33. Kocher, M.G., Lenz, M.V., Sutter, M.: Psychological pressure in competitive environments: new evidence from randomized natural experiments. Manag. Sci. 58, 1585–1591 (2012)

    Article  Google Scholar 

  34. Kreps, D.M.: Game Theory and Economic Modelling. Oxford University Press, Oxford (1990)

    Book  Google Scholar 

  35. Lewis, M.: Moneyball: The Art of Winning an Unfair Game. WW Norton & Company, New York (2004)

    Google Scholar 

  36. Lewis, M.: The Undoing Project: A Friendship That Changed the World. Penguin, London (2016)

    Google Scholar 

  37. Liu, H., Morstatter, F., Tang, J., Zafarani, R.: The good, the bad, and the ugly: uncovering novel research opportunities in social media mining. Int. J. Data Sci. Anal. 1, 137–143 (2016)

    Article  Google Scholar 

  38. Lopez, M.J., Matthews, G.J.: Building an NCAA men’s basketball predictive model and quantifying its success. J. Quant. Anal. Sports 11, 5–12 (2015)

    Google Scholar 

  39. Martin, L.: Sports Performance Measurement and Analytics. Pearson, Old Tappan (2016)

    Google Scholar 

  40. Miller, T.W.: Sports Analytics and Data Science. Pearson, Old Tappan (2016)

    Google Scholar 

  41. Martins, R.G., Martins, A.S., Neves, L.A., Lima, L.V., Flores, E.L., do Nascimento, M.Z.: Exploring polynomial classifier to predict match results in football championships. Expert Syst. Appl. 83, 79–93 (2017)

    Article  Google Scholar 

  42. Memmert, D., Hüttermann, S., Hagemann, N., Loffing, F., Strauss, B.: Dueling in the penalty box: evidence-based recommendations on how shooters and goalkeepers can win penalty shootouts in soccer. Int. Rev. Sport Exerc. Psychol. 6, 209–229 (2013)

    Article  Google Scholar 

  43. Mills, B., Fort, R.: League-level attendance and outcome uncertainty in US pro sports leagues. Econ. Inq. 52, 205–218 (2014)

    Article  Google Scholar 

  44. Misirlisoy, E., Haggard, P.: Asymmetric predictability and cognitive competition in football penalty shootouts. Curr. Biol. 24, 1918–1922 (2014)

    Article  Google Scholar 

  45. Morgulev, E., Azar, O.H., Lidor, R., Sabag, E., Bar-Eli, M.: Deception and decision making in professional basketball: is it beneficial to flop? J. Econ. Behav. Organ. 102, 108–118 (2014)

    Article  Google Scholar 

  46. Palacios-Huerta, I.: Professionals play minimax. Rev. Econ. Stud. 70, 395–415 (2003)

    Article  MATH  Google Scholar 

  47. Pope, D.G., Schweitzer, M.E.: Is Tiger Woods loss averse? Persistent bias in the face of experience, competition, and high stakes. Am. Econ. Rev. 101, 129–157 (2011)

    Article  Google Scholar 

  48. Reep, C., Bernard, B.: Skill and chance in association football. J. R. Stat. Soc. Ser. A (Gen.) 131, 581–585 (1968)

    Article  Google Scholar 

  49. Reich, B.J., Hodges, J.S., Carlin, B.P., Reich, A.M.: A spatial analysis of basketball shot chart data. Am. Stat. 60, 3–12 (2006)

    Article  MathSciNet  Google Scholar 

  50. Rottenberg, S.: The baseball players’ labor market. J. Polit. Econ. 64, 242–258 (1956)

    Article  Google Scholar 

  51. Silver, N.: The Signal and the Noise: Why so Many Predictions Fail-but Some Don’t. Penguin, London (2012)

    Google Scholar 

  52. Shapiro, S.L., Drayer, J.: An examination of dynamic ticket pricing and secondary market price determinants in Major League Baseball. Sport Manag. Rev. 17, 145–159 (2014)

    Article  Google Scholar 

  53. Staw, B.M., Hoang, H.: Sunk costs in the NBA: why draft order affects playing time and survival in professional basketball. Adm. Sci. Q. 40, 474–494 (1995)

    Article  Google Scholar 

  54. Taylor, B.A., Trogdon, J.G.: Losing to win: tournament incentives in the National Basketball Association. J. Labor Econ. 20, 23–41 (2002)

    Article  Google Scholar 

  55. Tversky, A., Kahneman, D.: Judgment under uncertainty: heuristics and biases. Science 185, 1124–1131 (1974)

    Article  Google Scholar 

  56. Ulmer, B., Fernandez, M., Peterson, M.: Predicting Soccer Match Results in the English Premier League. Doctoral dissertation, Ph. D. dissertation, Stanford (2013)

  57. Walker, M., Wooders, J.: Minimax play at Wimbledon. Am. Econ. Rev. 91, 1521–1538 (2001)

    Article  Google Scholar 

Download references

Acessar