Supressão do Apetite Induzida Pelo Exercício Físico Possíveis Mecanismos
Por Fabrício Eduardo Rossi (Autor), Sérgio Luiz Galan Ribeiro (Autor), Helton Pereira dos Santos Nunes de Moura (Autor), Thiago Emmanuel do Nascimento Malta (Autor), Vilton Emanoel Lopes de Moura e Silva (Autor), Marcelo Conrado de Freitas (Autor).
Resumo
Objetivo: Discutir os mecanismos pelos quais o exercício físico pode modular a produção de Interleucina-6, lactato sanguíneo, sistema nervoso autônomo, redistribuição do fluxo sanguíneo, motilidade gástrica e temperatura corporal induzindo a supressão do apetite. Resultados e Discussão: O exercício físico, quando realizado em alta intensidade, parece modular as concentrações dos hormônios envolvidos no controle da ingestão alimentar, como, por exemplo, aumentando a produção de peptídeos anorexígenos e diminuindo a produção de orexígenos, como a grelina acilada. Além da importância das concentrações hormonais no controle da ingestão alimentar, outros fatores secundários, como a redistribuição de fluxo sanguíneo, o aumento nas concentrações de lactato e Interleucina-6, a predominância do sistema nervoso simpático em detrimento ao parassimpático, alterações na motilidade gástrica e concentrações de glicose e insulina no sangue são fatores que sofrem influência direta do exercício físico e podem influenciar a resposta hormonal, tendo como consequência a supressão do apetite. Conclusão: A supressão do apetite parece ser influenciada pela intensidade do exercício físico, na qual, estes efeitos podem ser atribuídos ao aumento da resposta inflamatória e metabólica.
Referências
ADAM, Tanja CM; WESTERTERP-PLANTENGA, Margriet S. Activity-induced GLP-1 release in lean and obese subjects. Physiology & behavior, v. 83, n. 3, p. 459-466, 2004.
ADAMS Kenneth F. et al. Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old. The New England Journal of Medicine, v. 355, n. 8, p. 763-778, 2006.
ALMADA, C. et al. Plasma levels of interleukin-6 and interleukin-18 after an acute physical exercise: relation with post-exercise energy intake in twins. Journal of physiology and biochemistry, v. 69, n. 1, p. 85-95, 2013.
BROGLIO, Fabio et al. Ghrelin secretion is inhibited by glucose load and insulin-induced hypoglycaemia but unaffected by glucagon and arginine in humans. Clinical endocrinology, v. 61, n. 4, p. 503-509, 2004.
BROOM, David Robert et al. Exercise-induced suppression of acylated ghrelin in humans. Journal of applied physiology, v. 102, n. 6, p. 2165-2171, 2007.
BALLANTYNE, Garth H. Peptide YY (1-36) and peptide YY (3-36): Part I. Distribution, release and actions. Obesity surgery, v. 16, n. 5, p. 651-658, 2006.
BROOM, David R. et al. Influence of resistance and aerobic exercise on hunger, circulating levels of acylated ghrelin, and peptide YY in healthy males. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, v. 296, n. 1, p. R29-R35, 2009.
BRECHET, S. et al. Involvement of beta1-and beta2-but not beta3-adrenoceptor activation in adrenergic PYY secretion from the isolated colon. Journal of endocrinology, v. 168, n. 1, p. 177-183, 2001.
CABRAL-SANTOS, C. et al. Impact of high-intensity intermittent and moderate-intensity continuous exercise on autonomic modulation in young men. International Journal of Sports Medicine, v. 37, n. 06, p. 431-435, 2016.
CAIRNS, Simeon P. Lactic acid and exercise performance. Sports Medicine, v. 36, n. 4, p. 279-291, 2006.
CUMMINGS, David E.; OVERDUIN, Joost. Gastrointestinal regulation of food intake. The Journal of clinical investigation, v. 117, n. 1, p. 13-23, 2007.
CRABTREE, Daniel R.; BLANNIN, Andrew K. Effects of exercise in the cold on Ghrelin, PYY, and food intake in overweight adults. Medicine and science in sports and exercise, v. 47, n. 1, p. 49-57, 2015.
CHA, Seung Hun; LANE, M. Daniel. Central lactate metabolism suppresses food intake via the hypothalamic AMP kinase/malonyl-CoA signaling pathway. Biochemical and biophysical research communications, v. 386, n. 1, p. 212-216, 2009.
CHEW, Choy-Hoong et al. 27: IL-6 possibly modulates ghrelin expression through MEK1/p90RSK signaling cascade in pancreatic cell lines. Cytokine, v. 70, n. 1, p. 34, 2014.
ELLINGSGAARD, Helga et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nature medicine, v. 17, n. 11, p. 1481, 2011.
ENGELSTOFT, Maja S. et al. Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells. Molecular metabolism, v. 2, n. 4, p. 376-392, 2013.
ERDMANN, Johannes et al. Plasma ghrelin levels during exercise—effects of intensity and duration. Regulatory peptides, v. 143, n. 1-3, p. 127-135, 2007.
FUQUA, John S.; ROGOL, Alan D. Neuroendocrine alterations in the exercising human: implications for energy homeostasis. Metabolism-Clinical and Experimental, v. 62, n. 7, p. 911-921, 2013.
FLANAGAN, Daniel E. et al. The influence of insulin on circulating ghrelin. American Journal of Physiology-Endocrinology And Metabolism, v. 284, n. 2, p. E313-E316, 2003.
GUYTON ARTHUR, C.; HALL, John E. Tratado de Fisiología Médica. 12.ed. Elsevier, 2011.
HATAYA, Yuji et al. Alterations of plasma ghrelin levels in rats with lipopolysaccharide-induced wasting syndrome and effects of ghrelin treatment on the syndrome. Endocrinology, v. 144, n. 12, p. 5365-5371, 2003.
HAZELL, Tom J. et al. Effects of exercise intensity on plasma concentrations of appetite-regulating hormones: Potential mechanisms. Appetite, v. 98, p. 80-88, 2016.
HORNER, K. M. et al. The effects of weight loss strategies on gastric emptying and appetite control. Obesity reviews, v. 12, n. 11, p. 935-951, 2011.
HORNER, Katy M. et al. Acute exercise and gastric emptying: a meta-analysis and implications for appetite control. Sports Medicine, v. 45, n. 5, p. 659-678, 2015.
HOLST, Jens Juul. The physiology of glucagon-like peptide 1. Physiol Rev., v. 87, n. 4, p. 1409-1439, 2007.
HOWLEY, Edward T. The effect of different intensities of exercise on the excretion of epinephrine and norepinephrine. Medicine and science in sports, v. 8, n. 4, p. 219-222, 1976.
ISLAM, Hashim et al. Potential involvement of lactate and interleukin-6 in the appetite-regulatory hormonal response to an acute exercise bout. Journal of Applied Physiology, v. 123, n. 3, p. 614-623, 2017.
IWAKURA, Hiroshi; KANGAWA, Kenji; NAKAO, Kazuwa. The regulation of circulating ghrelin-with recent updates from cell-based assays. Endocrine journal, v. 62, n. 2, p. 107-122, 2015.
JAMES, Lewis J.; FUNNELL, Mark P.; MILNER, Samantha. An afternoon snack of berries reduces subsequent energy intake compared to an isoenergetic confectionary snack. Appetite, v. 95, p. 132-137, 2015.
JAMES, Philip T. Obesity: the worldwide epidemic. Clinics in Dermatology, v. 22, n. 4, p. 276-280, 2004.
KING, James A. et al. Appetite-regulatory hormone responses on the day following a prolonged bout of moderate-intensity exercise. Physiology & behavior, v. 141, p. 23-31, 2015.
KING, James A. et al. Influence of prolonged treadmill running on appetite, energy intake and circulating concentrations of acylated ghrelin. Appetite, v. 54, n. 3, p. 492-498, 2010.
KOJIMA, Chihiro et al. The influence of environmental temperature on appetite-related hormonal responses. Journal of physiological anthropology, v. 34, n. 1, p. 22, 2015.
KREYMANN, B. et al. Glucagon-like peptide-1 7-36: a physiological incretin in man. The Lancet, v. 330, n. 8571, p. 1300-1304, 1987.
LEVERITT, Michael et al. Concurrent strength and endurance training. Sports medicine, v. 28, n. 6, p. 413-427, 1999.
LOENNEKE, J. P. et al. The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Medical hypotheses, v. 78, n. 1, p. 151-154, 2012.
MARTINS, Catia et al. High-intensity interval training, appetite, and reward value of food in the obese. Medicine and Science in Sports and Exercise, v. 49, n. 9, p. 1851-1858, 2017.
MARTINS, Catia et al. Effect of moderate-and high-intensity acute exercise on appetite in obese individuals. Medicine and Science in Sports and Exercise, v. 47, n. 1, p. 40-48, 2015.
MONTEYNE, Alistair et al. Whey protein consumption after resistance exercise reduces energy intake at a post-exercise meal. European journal of nutrition, v. 57, n. 2, p. 585-592, 2018.
MORTON, G. J.; SCHWARTZ, M. W. The NPY/AgRP neuron and energy homeostasis. International Journal of Obesity, v. 25, n. S5, p. S56, 2002.
MUNDINGER, Thomas O.; CUMMINGS, David E.; TABORSKY JR, Gerald J. Direct stimulation of ghrelin secretion by sympathetic nerves. Endocrinology, v. 147, n. 6, p. 2893-2901, 2006.
NAGASE, Hajime.; BRAY, George A.; YORK, David A. Effects of pyruvate and lactate on food intake in rat strains sensitive and resistant to dietary obesity. Physiology & behavior, v. 59, n. 3, p. 555-560, 1996.
NEUFER, P. D.; YOUNG, Andrew J.; SAWKA, Michael N. Gastric emptying during walking and running: effects of varied exercise intensity. European journal of applied physiology and occupational physiology, v. 58, n. 4, p. 440-445, 1989.
OSADA, Takuya et al. Reduced blood flow in abdominal viscera measured by Doppler ultrasound during one-legged knee extension. Journal of Applied Physiology, v. 86, n. 2, p. 709-719, 1999.
OTTE, Johannes A. et al. Exercise induces gastric ischemia in healthy volunteers: a tonometry study. Journal of Applied Physiology, v. 91, n. 2, p. 866-871, 2001.
PANISSA, Valéria Leme Gonçalves et al. Effect of exercise intensity and mode on acute appetite control in men and women. Applied Physiology, Nutrition, and Metabolism, v. 41, n. 10, p. 1083-1091, 2016.
PEAKE, Jonathan M. et al. Metabolic and hormonal responses to isoenergetic high-intensity interval exercise and continuous moderate-intensity exercise. American Journal of Physiology-Endocrinology and Metabolism, v. 307, n. 7, p. E539-E552, 2014.
PEDERSEN, Bente K.; FEBBRAIO, Mark A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiological reviews, v. 88, n. 4, p. 1379-1406, 2008.
PEDERSEN, Bente Klarlund et al. Role of myokines in exercise and metabolism. Journal of applied physiology, v. 103, n. 3, p. 1093-1098, 2007.
PSICHAS, Arianna; REIMANN, Frank; GRIBBLE, Fiona M. Gut chemosensing mechanisms. The Journal of clinical investigation, v. 125, n. 3, p. 908-917, 2015.
PENDHARKAR, Sayali A. et al. Gastrin-releasing peptide and glucose metabolism following pancreatitis. Gastroenterology research, v. 10, n. 4, p. 224, 2017.
PERINI, Renza et al. Plasma norepinephrine and heart rate dynamics during recovery from submaximal exercise in man. European Journal of Applied Physiology and Occupational Physiology, v. 58, n. 8, p. 879-883, 1989.
SIM, Aaron Y. et al. High-intensity intermittent exercise attenuates ad-libitum energy intake. International Journal of Obesity, v. 38, n. 3, p. 417, 2014.
SCHULTES, Bernd et al. Lactate infusion during euglycemia but not hypoglycemia reduces subsequent food intake in healthy men. Appetite, v. 58, n. 3, p. 818-821, 2012.
STANLEY, Sarah et al. Hormonal regulation of food intake. Physiol. Rev., v. 85, n. 4, p. 1131–1158, 2005.
SCHUBERT Mathew M. et al. Acute exercise and hormones related to appetite regulation: a meta-analysis. Sports Med., v. 44, n. 3, p. 387-403, 2014.
SHORTEN, Allison L.; WALLMAN, Karen E.; GUELFI, Kym J. Acute effect of environmental temperature during exercise on subsequent energy intake in active men–. The American journal of clinical nutrition, v. 90, n. 5, p. 1215-1221, 2009.
SHIIYA, Tomomi et al. Significant lowering of plasma ghrelin but not des-acyl ghrelin in response to acute exercise in men. Endocrine Journal, v. 58, n. 5, p. 335-342, 2011.
SKIBICKA, Karolina P.; GRILL, Harvey J. Energetic responses are triggered by caudal brainstem melanocortin receptor stimulation and mediated by local sympathetic effector circuits. Endocrinology, v. 149, n. 7, p. 3605-3616, 2008.
TANK, A. William, WONG, Dona Lee. Peripheral and central effects of circulating catecholamines. Comprehensive Physiology, 2015.
TRAPP, E. Gail et al. The effects of high-intensity intermittent exercise training on fat loss and fasting insulin levels of young women. International Journal of Obesity, v. 32, n. 4, p. 684, 2008.
VATANSEVER-OZEN, Serife et al. The effects of exercise on food intake and hunger: Relationship with acylated ghrelin and leptin. Journal of sports science and medicine, v. 10, n. 2, p. 283, 2011
VINCENT, Sophie et al. Plasma glucose, insulin and catecholamine responses to a Wingate test in physically active women and men. European journal of applied physiology, v. 91, n. 1, p. 15-21, 2004.
WASSE, Lucy K. et al. The influence of vigorous running and cycling exercise on hunger perceptions and plasma acylated ghrelin concentrations in lean young men. Applied Physiology, Nutrition, and Metabolism, v. 38, n. 999, p. 1-6, 2012.
WAGENMAKERS, A. J. et al. Carbohydrate supplementation, glycogen depletion, and amino acid metabolism during exercise. American Journal of Physiology-Endocrinology And Metabolism, v. 260, n. 6, p. E883-E890, 1991.
WANG, Ye et al. Vagal nerve regulation is essential for the increase in gastric motility in response to mild exercise. The Tohoku journal of experimental medicine, v. 222, n. 2, p. 155-163, 2010.
WU, Rongqian et al. Orexigenic hormone ghrelin attenuates local and remote organ injury after intestinal ischemia-reperfusion. PLoS One, v. 3, n. 4, p. e2026, 2008.
WOODS, Stephen C.; RAMSAY, Douglas S. Food intake, metabolism and homeostasis. Physiol. Behav., v. 104, n. 1, p. 4–7, 2011.
ZHANG, Tao et al. Neural regulation of peptide YY secretion. Regulatory peptides, v. 48, n. 3, p. 321-328, 1993.