A Suplementação de Cafeína Altera a Contribuição de Energia Durante Um Contra-relógio de Ciclo de Aproximadamente 30 Minutos Baseado no Trabalho?
Por Gabriel Barreto (Autor), Rafael Pires da Silva (Autor), Guilherme Yamaguchi (Autor), Luana Farias de Oliveira (Autor), Vitor de Salles Painelli (Autor), Bruno Gualano (Autor), Bryan Saunders (Autor).
Resumo
A cafeína demonstrou aumentar a contribuição de energia anaeróbica durante os contra-relógio de ciclismo de curta duração (TT), embora não haja informações sobre se a cafeína altera a contribuição de energia durante TTs aeróbicos mais prolongados. O objetivo deste estudo foi determinar os efeitos da suplementação de cafeína em exercícios mais longos e predominantemente aeróbicos. Quinze ciclistas do sexo masculino com treinamento recreativo (idade 38 ± 8 anos, altura 1,76 ± 0,07 m, massa corporal 72,9 ± 7,7 kg) realizaram um TT de ciclismo de ~ 30 min após 6 mg · kg-1BM de cafeína (CAF) ou placebo (PLA) suplementação e uma sessão de controle (CON) sem suplementação, em delineamento duplo-cego, randomizado, contrapeso e cross-over. A potência média de saída (MPO) foi registrada como medida de resultado. Os valores respiratórios foram medidos durante o exercício para a determinação da contribuição do sistema de energia. Os dados foram analisados usando modelos mistos. CAF melhorou MPO médio em comparação com CON (P = 0,01), e uma tendência para uma melhoria em comparação com PLA (P = 0,07); não houve diferença no MPO em nenhum momento durante o exercício entre as condições. Houve um efeito principal da Condição (P = 0,04) e Tempo (P <0,0001) na concentração de lactato sanguíneo, que tendeu a ser maior no CAF vs. PLA e CON (efeito da condição, ambos P = 0,07). Avaliações de esforço percebido aumentaram ao longo do tempo (P <0,0001), sem efeito da condição ou interação (ambos P> 0,05). A contribuição de energia glicolítica foi aumentada em CAF em comparação com CON e PLA (ambos P <0,05), mas não aeróbica ou ATP-CP (ambos P> 0,05). O CAF melhorou o desempenho aeróbio do TT em comparação ao CON, o que pode ser explicado pelo aumento da contribuição de energia glicolítica.
Referências
1. de Jong J, van der Meijden L, Hamby S, Suckow S, Dodge C, de Koning JJ, et al. Pacing strategy in short cycling time trials. Int J Sports Physiol Perform. 2015;10(8):1015-22.
2. Corbett J, Barwood MJ, Ouzounoglou A, Th elwell R, Dicks M. Influence of competition on performance and pacing during cycling exercise. Med Sci Sports Exerc. 2012;44(3):509-15.
3. Craig NP, Norton KI, Bourdon PC, Woolford SM, Stanef T, Squires B, et al. Aerobic and anaerobic indices contributing to track endurance cycling performance. European journal of applied physiology and occupational physiology. 1993;67(2):150-8.
4. Simmonds MJ, Minahan CL, Sabapathy S. Caffeine improves supramaximal cycling but not the rate of anaerobic energy release. Eur J Appl Physiol. 2010;109(2):287-95.
5. Tarnopolsky M, Cupido C. Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. J Appl Physiol (1985). 2000;89(5):1719-24.
6. Mohr M, Nielsen JJ, Bangsbo J. Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. J Appl Physiol (1985). 2011;111(5):1372-9.
7. Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Spor. 2005;15(2):69-78.
8. Wiles JD, Coleman D, Tegerdine M, Swaine IL. The effects of caffeine ingestion on performance time, speed and power during a laboratory-based 1 km cycling time-trial. Journal of sports sciences. 2006;24(11):1165-71.
9. Santos RA, Kiss MA, Silva-Cavalcante MD, Correia-Oliveira CR, Bertuzzi R, Bishop DJ, et al. Caffeine alters anaerobic distribution and pacing during a 4000-m cycling time trial. PloS one. 2013;8(9):e75399.
10. Astorino TA, Cottrell T, Lozano AT, Aburto-Pratt K, Duhon J. Increases in cycling performance in response to caffeine ingestion are repeatable. Nutrition research. 2012;32(2):78-84.
11. Foad AJ, Beedie CJ, Coleman DA. Pharmacological and psychological effects of caff eine ingestion in 40-km cycling performance. Med Sci Sports Exerc. 2008;40(1):158-65.
12. Walker GJ, Dziubak A, Houghton L, Prendergast C, Lim L, Bishop NC. The effect of caffeine ingestion on human neutrophil oxidative burst responses following time-trial cycling. J Sports Sci. 2008;26(6):611-9.
13. De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111-22.
14. Fernandes AL, Lopes-Silva JP, Bertuzzi R, Casarini DE, Arita DY, Bishop DJ, et al. Effect of time of day on performance, hormonal and metabolic response during a 1000-M cycling time trial. PloS one. 2014;9(10):e109954.
15. Mason RL. Statistical design and analysis of experiments: with applications to engineering and science. 2nd ed. Hoboken NJ, John Wiley & Sons, Inc. 2003:328-31.
16. Jeukendrup AE, Hopkins S, Aragon-Vargas LF, Hulston C. No eff ect of carbohydrate feeding on 16 km cycling time trial performance. Eur J Appl Physiol. 2008;104(5):831-7.
17. Oliveira LF, Yamaguchi G, Painelli VS, Silva RP, Gonçalves LS, Gualano B, et al. Comprehensive reliability analysis of a 16 km simulated cycling time-trial in well-trained individuals. Journal of Science and Cycling. 2017;6(1):11-7.
18. McLaughlin JE, King GA, Howley ET, Bassett DR, Jr., Ainsworth BE. Validation of the COSMED K4 b2 portable metabolic system. Intern J Sports Med. 2001;22(4):280-4.
19. Borg GA. Perceived exertion. Exerc Sport Sci Rev. 1974;2:131-53.
20. Artioli GG, Bertuzzi RC, Roschel H, Mendes SH, Lancha AH, Jr., Franchini E. Determining the contribution of the energy systems during exercise. J Vis Exp. 2012(61).
21. Beneke R, Beyer T, Jachner C, Erasmus J, Hutler M. Energetics of karate kumite. Eur J Appl Physiol. 2004;92(4-5):518-23.
22. Franchini E, Sterkowicz S, Szmatlan-Gabrys U, Gabrys T, Garnys M. Energy system contributions to the special Judo fitness Test. Intj Sport Physiol. 2011;6(3):334-43.
23. Lopes-Silva JP, Santos JFS, Branco BHM, Abad CCC, Oliveira LF, Loturco I. Caffeine ingestion increases estimated glycolytic metabolism during Taekwondo combat simulation but does not improve performance or parasympathetic reactivation. PloS one. 2016;11(10):e0142078.
24. Mello FD, Bertuzzi RCD, Grangeiro PM, Franchini E. Energy systems contributions in 2,000 m race simulation: a comparison among rowing ergometers and water. Eur J Appl Physiol. 2009;107(5):615-9.
25. di Prampero PE, Ferretti G. The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Resp Physiol. 1999;118(2-3):103-15.
26. Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Intj Sport Physiol. 2006;1(1):50-7.
27. Hopkins WG. Probabilities of clinical or practical signifi cance. Sport Sci. 2002;6:431.
28. Paton CD, Hopkins WG. Ergometer error and biological variation in power output in a performance test with three cycle ergometers. Intern J Sports Med. 2006;27(6):444-7.
29. Beedie CJ, Foad AJ. The placebo effect in sports performance: a brief review. Sports Med. 2009;39(4):313-29.
30. Saunders B, de Oliveira LF, da Silva RP, de Salles Painelli V, Goncalves LS, Yamaguchi G, et al. Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation. Scand J Med Sci Sports. 2017;27(11):1240-7.
31. Beedie CJ, Stuart EM, Coleman DA, Foad AJ. Placebo effects of caffeine on cycling performance. Med Sci Sports Exerc. 2006;38(12):2159-64.
32. Sachse C, Brockmoller J, Bauer S, Roots I. Functional signifi cance of a C->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caff eine. Br J Clin Pharmacol. 1999;47(4):445-9.
33. Pataky MW, Womack CJ, Saunders MJ, Goffe JL, D’Lugos AC, El-Sohemy A, et al. Caffeine and 3-km cycling performance: effects of mouth rinsing, genotype, and time of day. Scand J Med Sci Sports. 2016;26(6):613-9.
34. Womack CJ, Saunders MJ, Bechtel MK, Bolton DJ, Martin M, Luden ND, et al. The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J Internl Soc Sports Nutrition. 2012;9(1):7.
35. Salinero JJ, Lara B, Ruiz-Vicente D, Areces F, Puente-Torres C, Gallo-Salazar C, et al. CYP1A2 Genotype variations do not modify the benefits and drawbacks of caffeine during exercise: a pilot study. Nutrients. 2017;9(3).
36. Beaumont R, Cordery P, Funnell M, Mears S, James L, Watson P. Chronic ingestion of a low dose of caffeine induces tolerance to the performance benefits of caffeine. J Sports Sci. 2017;35(19):1920-7.
37. Goncalves LS, Painelli VS, Yamaguchi G, Oliveira LF, Saunders B, da Silva RP, et al. Dispelling the myth that habitual caffeine consumption influences the performance response to acute caffeine supplementation. J Appl Physiol (1985). 2017;123(1):213-20.
38. Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785-807.
39. Abbiss CR, Laursen PB. Describing and understanding pacing strategies during athletic competition. Sports Med. 2008;38(3):239-52.