Resumo

Conforme disciplinado em seu Regimento Interno1, são três as missões básicas da Escola de Educação Física e Esporte da Universidade de São Paulo (EEFE-USP): promover e desenvolver o conhecimento em Educação Física e Esporte, por meio do ensino, da pesquisa e da extensão; ministrar o ensino superior visando à formação de pessoal capacitado ao exercício das atividades profissionais e da investigação científica em Educação Física e Esporte; estender à sociedade serviços indissociáveis das atividades de ensino e de pesquisa.Em complemento, por ocasião da reunião anual de planejamento estratégico da EEFE-USP, realizada na cidade do Embu das Artes - SP, em fevereiro de 2004, delimitou-se a missão básica da EEFE-USP: oferecer ensino de qualidade e produzir conhecimento inovador nas áreas de Educação Física e Esporte de maneira interdisciplinar, interagindo com a sociedade.

REFERÊNCIAS

Universidade de São Paulo. Escola de Educação Física e Esporte. Resolução nº 8.543, de 27 de novembro de 2023. Baixa o Regimento da Escola de Educação Física e Esporte. Disponível em: https://leginf.usp.br/?resolucao=resolucao-no-8543-de-27-de-novembro-de-2023.

Universidade de São Paulo. Escola de Educação Física e Esporte. Resolução nº 1.767, de 08 de janeiro de 1980.

Universidade de São Paulo. Portaria GR nº 1.057, de 1970.

Universidade de São Paulo. Portaria 1.380, de 01 de fevereiro de 1971.

Universidade de São Paulo. Resolução nº 3.864, de 28 de agosto de 1991. Altera denominação de Departamentos da Escola de Educação Física, e em conseqüência, modifica o art. 49 do Regimento da mencionada Escola. Disponível em: https://leginf.usp.br/?resolucao=resolucao-no-3864-de-28-de-agosto-de-1991.

Universidade de São Paulo. Escola de Educação Física e Esporte. Ata da 123a Reunião do Conselho Departamental, de 03 de outubro de 1991.

Brasil. Ministério da Educação. Conselho Nacional de Educação. Resolução nº 6, de 18 de dezembro de 2018. Institui Diretrizes Curriculares Nacionais dos Cursos de Graduação em Educação Física. Brasil: Diário Oficial da União de 19/12/2018.

Organização das Nações Unidas. Objetivos de Desenvolvimento Sustentável. 2016. Disponível em: https://brasil.un.org/pt-br/sdgs.

Barauna VG, B Junior ML, Costa Rosa LFBP, Casarini DE, Krieger JE, Oliveira EM. Cardiovascular adaptations in rats submitted to a resistance-training model. Clin Experimental Pharmacol Physiol. 2005;32:249-254.

Melo SFS, Barauna VG, Júnior MAC, Bozi LHM, Drummond LR, Natali AJ, Oliveira EM. Resistance

training Regulates Cardiac Function through Modulation of miRNA-214. Int J Molecular Sci. 2015;16(4):6855-6867.

Barauna VG, Magalhães FC, Krieger JE, Oliveira EM. AT1 receptor participates in the cardiac hypertrophy induced by resistance training in rats. Am J Physiol Regul Integr Comp Physiol. 2008;295(R381-R387).

Melo SFS, Silva Júnior ND, Barauna VG, Oliveira EM. Cardiac AT(1) receptor-dependent and IGF1 receptor-independent signaling is activated by a single bout of resistance exercise. Physiol Res. 2017;66(6):1061-1065.

Rocha FL, Carmo EC, Roque FR, Hashimoto NY, Rossoni LV, Frimm C, Anéas I, Negrão CE, Krieger JE, Oliveira EM. Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. Am J Physiol Heart Circ Physiol. 2007;(60):H3575-83.

Alves CR, Fernandes T, Lemos JR, Magalhães FC, Trombetta IC, Alves GB, Mota GFAD, Dias RG, Pereira AC, Krieger JE, Negrão CE, Oliveira EM. Aerobic exercise training differentially affects ACE C- and N-domain activities in humans: Interactions with ACE I/D polymorphism and association with vascular reactivity. J Renin Angiotensin Aldosterone Syst. 2018;19(2):1470320318761725.

Magalhães FC, Fernandes T, Bassaneze V, Mattos KC, Schettert I, Marques FLN, Krieger JE, Nava R, Barauna VG, Oliveira EM. High-volume endurance exercise training stimulates hematopoiesis by increasing ACE NH2-terminal activity. Clinical Sci. 2021;135(20):2377-2391.

Roque FR, Soci UP, De Angelis K, Coelho MA, Furstenau CR, Vassallo DV, Irigoyen MC, Oliveira EM. Moderate exercise training promotes adaptations in coronary blood flow and adenosine production in normotensive rats. Clinics. 2011;66(12):2105-2111.

Roque FR, Briones AM, García-Redondo AB, Galán M, Martínez-Revelles S, Avendaño MS, Cachofeiro V, Fernandes T, Vassallo DV, Oliveira EM, Salaices M. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol. 2013;168(3):686-703.

Rodrigues LF, Pelozin BRA, da Silva Junior ND, Soci UPR, do Carmo EC, da Mota GFA, Cachofeiro V, Lahera V, Oliveira EM, Fernandes T. Angiotensin II promotes skeletal muscle angiogenesis induced by volume-dependent aerobic exercise training: Effects on miRNAs-27a/b and Oxidant-Antioxidant Balance. Antioxidants (Basel). 2022;11(4):651.

Fernandes T, Nakamuta JS, Magalhães FC, Roque FR, Lavini-Ramos C, Schettert IT, Coelho V, Krieger JE, Oliveira EM. Exercise training restores the endothelial progenitor cells number and function in hypertension: implications for angiogenesis. J Hypertens. 2012;30(11):2133-2143.

Gomes JLP, Fernandes T, Soci UPR, Silveira AC, Barretti DLM, Negrão CE, Oliveira EM. Obesity downregulates microRNA-126 inducing capillary rarefaction in skeletal muscle: Effects of aerobic exercise training. Oxid Med Cell Longev. 2017;2017:2415246.

Fernandes T, Casaes L, Soci U, Silveira A, Gomes J, Barretti D, Roque F, Oliveira E. Exercise training restores the cardiac microRNA-16 levels preventing microvascular rarefaction in obese Zucker rats. Obes Facts. 2018;11(1):15-24.

Fernandes T, Baraúna VG, Negrão CE, Phillips MI, Oliveira EM. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol. 2015;309(4).

Silveira AC, Gomes JLP, Roque F, Fernandes T, Oliveira EM. MicroRNAs in obesity-associated disorders: the role of eercise training. Obesity Facts. 2022;15(2):105-117.

Improta-Caria AC, Soci UPR, Rodrigues LF, Fernandes T, Oliveira EM. MicroRNAs regulating pathophysiological processes in obesity: the impact of exercise training . Current Opinion Physiol. 2023;33.

Soci UPR, Fernandes T, Barauna VG, Hashimoto NY, de Fátima Alves Mota G, Rosa KT, Irigoyen MC, Philips MI, de Oliveira EM. Epigenetic control of exercise training-induced cardiac hypertrophy by miR-208. Clin Sci (London). 20161;130(22):2005-2015.

Fernandes T, Hashimoto NY, Magalhães FC, Fernandes FB, Casarini DE, Carmona AK, Krieger JE, Phillips MI, Oliveira EM. Aerobic exercise training-induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin ii, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7). Hypertension. 2011;58(2):182-9.

Pelozin BRA, Soci UPR, Gomes JLP, Oliveira EM, Fernandes T. mTOR signaling-related microRNAs as cardiac hypertrophy modulators in high-volume endurance training. J Appl Physiol. 2022;132(1):126-139.

Soci UP, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, Irigoyen MC, Phillips MI, Oliveira EM. MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiol Genomics. 2011;15:43(11):665-73.

Improta-Caria AC, Rodrigues LF, Joaquim VHA, Sousa RAL, Fernandes T, Oliveira EM. MicroRNAs regulating signaling pathways in cardiac fibrosis: potential role of exercise training. Am J Physiol Heart Circ Physiol. 2024;1:326(3).

Silva-Jr ND, Fernandes T, Soci UP, Monteiro AW, Phillips MI, Oliveira EM. Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Med Sci Sports Exerc. 2012;44(8):1453-62.

Pereira N, Gatto C, Oliveira EM, Fernandes T. Noncoding RNAs in the cardiovascular system: exercise training effects. In: Valarmathi MT, organizador. Muscle cells: recent advances and future perspectives. IntechOpen, 2020.

Fernandes T, Magalhães FC, Roque FR, Phillips MI, Oliveira EM. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs-16, -21, and -126. Hypertension. 2012;59(2).

Joaquim VHA, Pereira NP, Fernandes T, Oliveira EM. Circular RNAs as a diagnostic and therapeutic target in cardiovascular diseases. Int J Molecular Sci. 2023;24(3):2125.

Negrão CE, Barretto ACP, Rondon MUPB, editores. Cardiologia do exercício: do atleta ao cardiopata. Barueri: Manole, 2019. 836 p.

Luz PL, Libby P, Laurindo FRM, Chagas ACP, editores. Endothelium and cardiovascular diseases: vascular biology and clinical syndromes. Amsterdan: Elsevier, 2018. 758 p.

Brandao MU, Wajngarten M, Rondon E, Giorgi MC, Hironaka F, Negrao CE. Left ventricular function during dynamic exercise in untrained and moderately trained subjects. J Appl Physiol. 1993;75(5):1989-1995.

Brandão Rondon MU, Alves MJ, Braga AM, Teixeira OT, Barretto AC, Krieger EM, Negrão CE. Postexercise blood pressure reduction in elderly hypertensive patients. J Am Coll Cardiol. 2002;39(4):676-82.

Laterza MC, Matos LD, Trombetta IC, Braga AM, Roveda F, Alves MJ, Krieger EM, Negrão CE, Rondon MU. Exercise training restores baroreflex sensitivity in never-treated hypertensive patients. Hypertension. 2007;49(6):1298-1306.

Martinez DG, Nicolau JC, Lage RL, Toschi-Dias E, de Matos LDNJ, Alves MJNN, Trombetta IC, Dias da Silva VJ, Middlekauff HR, Negrão CE, Rondon MUPB. Effects of long-term exercise training on autonomic control in myocardial infarction patients. Hypertension. 2011;58(6).

Martinez DG, Nicolau JC, Lage RL, Trombetta IC, de Matos LD, Laterza MC, Negrão CE, Rondon MU. Abnormal muscle vascular responses during exercise in myocardial infarction patients. Int J Cardiol. 2013;165(1):210-2.

Ferreira-Santos L, Martinez DG, Nicolau JC, Moreira HG, Alves MJ, Pereira AC, et al. Neurovascular control during exercise in acute coronary syndrome patients with Gln27Glu polymorphism of β2-adrenergic receptor. PLoS ONE. 2017;12(2):e0173061.

Toschi-Dias E, Trombetta IC, Silva VJD, Maki-Nunes C, Cepeda FX, Alves MJ, Drager LF, Lorenzi-Filho G, Negrão CE, Rondon MU. Time delay of baroreflex control and oscillatory pattern of sympathetic activity in patients with metabolic syndrome and obstructive sleep apnea. Am J Physiol Heart Circ Physiol. 2013;304(7):H1038-44.

Toschi-Dias E, Trombetta IC, Silva VJD, Maki-Nunes C, Cepeda FX, Alves M, et al. Diet associated with exercise improves baroreflex control of sympathetic nerve activity in metabolic syndrome and sleep apnea patients. Sleep Breath. 2019;23:143-51.

Toschi-Dias E, Montano N, Tobaldini E, Trevizan PF, Groehs RV, Antunes-Correa LM, Nobre TS, Lobo DM, Sales ARK, Ueno-Pardi LM, Matos LDNJ, Oliveira PA, Braga AMFW, Alves MJNN, Negrão CE, Rondon MUPB. Oscillatory pattern of sympathetic nerve bursts is associated with baroreflex function in heart failure patients with reduced ejection fraction. Front Neurosci. 2021;15:669535.

Negrao CE, Moreira ED, Santos MC, Farah VM, Krieger EM. Vagal function impairment after exercise training. J Appl Physiol. 1992;72(5):1749-53.

Véras-Silva AS, Mattos KC, Gava NS, Brum PC, Negrão CE, Krieger EM. Low-intensity exercise training decreases cardiac output and hypertension in spontaneously hypertensive rats. Am J Physiol. 1997;273(6):H2627-31.

Gava NS, Véras-Silva AS, Negrão CE, Krieger EM. Low-intensity exercise training attenuates cardiac beta-adrenergic tone during exercise in spontaneously hypertensive rats. Hypertension. 1995;26(6 Pt 2):1129-33.

Ribeiro MM, Trombetta IC, Batalha LT, Rondon MU, Forjaz CL, Barretto AC, Villares SM, Negrão CE. Muscle sympathetic nerve activity and hemodynamic alterations in middle-aged obese women. Braz J Med Biol Res. 2001 Apr;34(4):475-8.

Trombetta IC, Batalha LT, Rondon MUPB, Laterza MC, Kuniyoshi FHS, Gowdak MMG, Barretto ACP, Halpern A, Villares SMF, Negrão CE. Weight loss improves neurovascular and muscle metaboreflex control in obesity. Am J Physiol Heart Circ Physiol. 2003;285(3).

Paulino EC, Ferreira JC, Bechara LR, Tsutsui JM, Mathias Jr W, Lima FB, Casarini DE, Cicogna AC, Brum PC, Negrão CE. Exercise training and caloric restriction prevent reduction in cardiac Ca2+-handling protein profile in obese rats. Hypertension. 2010 Oct;56(4):629-35.

Negrão CE, Rondon MU, Tinucci T, Alves MJ, Roveda F, Braga AM, Reis SF, Nastari L, Barretto AC, Krieger EM, Middlekauff HR. Abnormal neurovascular control during exercise is linked to heart failure severity. Am J Physiol Heart Circ Physiol. 2001;280(3):H1286-92.

Roveda F, Middlekauff HR, Rondon MU, Reis SF, Souza M, Nastari L, Barretto AC, Krieger EM, Negrão CE. The effects of exercise training on sympathetic neural activation in advanced heart failure: a randomized controlled trial. J Am Coll Cardiol. 2003;42(5):854-60.

Fraga R, Franco FG, Roveda F, Matos LN, Braga AM, Rondon MU, Rotta DR, Brum PC, Barretto AC, Middlekauff HR, Negrão CE. Exercise training reduces sympathetic nerve activity in heart failure patients treated with carvedilol. Eur J Heart Fail. 2007;9(6-7):630-6.

Ueno LM, Drager LF, Rodrigues AC, Rondon MU, Braga AM, Mathias W Jr, Krieger EM, Barretto AC, Middlekauff HR, Lorenzi-Filho G, Negrão CE. Effects of exercise training in patients with chronic heart failure and sleep apnea. Sleep. 2009;32(5):637-47.

Antunes-Correa LM, Melo RC, Nobre TS, Ueno LM, Franco FGM, Braga AMW, Rondon MUPB, Brum PC, Barretto ACP, Middlekauff HR, Negrao CE. Impact of gender on benefits of exercise training on sympathetic nerve activity and muscle blood flow in heart failure. Eur J Heart Fail.2010;12:58-65.

Antunes-Correa LM, Kanamura BY, Melo RC, Nobre TS, Ueno LM, Franco FG, Roveda F, Braga AM, Rondon MU, Brum PC, Barretto AC, Middlekauff HR, Negrao CE. Exercise training improves neurovascular control and functional capacity in heart failure patients regardless of age. Eur J Prev Cardiol. 2012;19:822-9.

Matos LD, Gardenghi G, Rondon MU, Soufen HN, Tirone AP, Barretto AC, Brum PC, Middlekauff HR, Negrão CE. Impact of 6 months of therapy with carvedilol on muscle sympathetic nerve activity in heart failure patients. J Card Fail. 2004;10(6):496-502.

Acessar