Resumo

Introdução: A análise dos diversos fatores genéticos, principalmente os relacionados aos polimorfismos de DNA, têm sido investigados na busca de uma melhor compreensão dos mecanismos relacionados à hipertrofia e força muscular. Dentre os diversos genes polimórficos relacionados ao tema estão a miostatina e o gene α-actinina-3 (ACTN3).

Objetivo: Avaliar a modulação do gene da miostatina na hipertrofia muscular esquelética e do gene ACTN3 na regulação dos níveis de força.

Métodos: Estudo de revisão integrativa no qual foram pesquisados artigos que tivessem avaliado a modulação genética da hipertrofia muscular esquelética e da força. Fizeram parte desta investigação estudos originais e de revisão, publicados em português, inglês e espanhol, entre os anos de 1995 a 2017, selecionados nas bases de dados SciELO e Pubmed, utilizando-se três conjuntos de intersecção de termos de busca bibliográfica em português: a) “miostatina” e “hipertrofia muscular esquelética” e/ou “genética”; e b) “exercício físico” ou “treinamento aeróbico” ou “treinamento de força” ou “rendimento esportivo” e “ACTN3” e/ou “força muscular” e/ou genética. Em inglês: a) “myostatin”and “skeletal muscle hypertrophy” and/or genetics; and b) “physical exercise” and “aerobic training”, strength training, sports performance) and “ACTN3” “muscular strength” and/or “genetic”. E em espanhol: “miostatina” y “hipertrofia muscular esquelética” y/o genética; y b) “ejercicio físico” o “entrenamiento aeróbico” o “entrenamiento de fuerza” o “rendimiento desportivo) y “ACTN3” o “fuerza muscular” y/o genética”.

Resultados e Discussão: Os estudos apontaram: a) associação do genótipo RR577 do ACTN3 com a força e o tamanho da área de secção transversa do músculo esquelético; b) correlação do alelo R com fibras glicolíticas de contração rápida e níveis médios de testosterona significativamente mais elevados; e c) o polimorfismo do ACTN3 está relacionado ao treinamento de alta intensidade. As evidências apontaram que a miostatina atua na inibição da hipertrofia muscular esquelética, e também pode ser modulada geneticamente pelo exercício físico.

Conclusão: A literatura aponta evidências de que o polimorfismo do ACNT3 está relacionado com o treinamento de alta intensidade, ressaltando que, segundo os resultados dos estudos, houve correlação do alelo R, com fibras glicolíticas de contração rápida e com os níveis de testosterona significativamente mais elevados. Sendo assim, o gene ACTN3 está correlacionado com o desenvolvimento da força muscular e a folistatina, proteína antagônica da miostatina, está associada ao aumento da massa muscular.

Genetic Modulation of Myostatin and Actn3 Gene in Muscular Hypertrophy and Force: an Integrative Review

Introduction: The analysis of several genetic factors, especially those related to DNA polymorphisms, has been investigated in the search for a better understanding of the mechanisms related to hypertrophy and muscle strength. Among the several polymorphic genes related to the subject are myostatin and ACTN3.

Objective: To evaluate the modulation of the myostatin gene in skeletal muscle hypertrophy and the ACTN3 gene in the regulation of strength levels.

Methods: An integrative review study in which articles were searched that assessed the genetic modulation of skeletal muscle hypertrophy and strength. Original and review studies, published in Portuguese, English and Spanish, between 1995 and 2017, selected in the SciELO and PubMed databases, were carried out using three sets of intersection of bibliographic search: In English: a) “myostatin” and “skeletal muscle hypertrophy” and/or genetics; and b) “physical exercise” and “aerobic training”, strength training, sports performance) and “ACTN3” “muscular strength” and/or “genetic”. In Portuguese: a) “miostatina” e “hipertrofia muscular esquelética” e/ou “genética”; e b) “exercício físico” ou “treinamento aeróbico” ou “treinamento de força” ou “rendimento esportivo” e “ACTN3” e/ou “força muscular” e/ou genética. And in Spanish: “miostatina” y “hipertrofia muscular esquelética” y/o genética; y b) “ejercicio físico” o “entrenamiento aeróbico” o “entrenamiento de fuerza” o “rendimiento desportivo) y “ACTN3” o “fuerza muscular” y/o genética”.

Results and Discussion: Studies indicated: a) association of RR577 genotype of ACTN3 with the strength and size of the cross-sectional area of skeletal muscle; b) correlation of the R allele with fast contracting glycolytic fibers and significantly higher mean levels of testosterone; and, c) ACTN3 polymorphism is related to high intensity training. Evidence has pointed out that myostatin acts on inhibition of skeletal muscle hypertrophy, as well as being genetically modulated by physical exercise.

Conclusion: The literature showed evidence that the ACNT3 polymorphism is related to the high intensity training, emphasizing that according to the results of the studies, there was a correlation of the R allele with fast contracting glycolytic fibers and with testosterone levels higher. Thus, the ACTN3 gene is correlated with the development of muscle strength and follistatin, an antagonistic protein of myostatin, is associated with increased muscle mass. Keywords: hypertrophy, muscle strength, myostatin, polymorphism.

Referências

Ravagnani FC de P, Júnior ATDC, Werk R de, Coelho C de F. Composição corporal e objetivos na procura de atividades físicas supervisionadas entre iniciantes em programa de exercícios físicos em academia de Botucatu-SP. Fitness & Performance Journal. 2007;6(3): 147–151.

American College of Sports Medicine. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise. [Online] 2009;41(3): 687–708. Available from: doi:10.1249/MSS.0b013e3181915670

Arruda DP de, Assumpção C de O, Urtado CB, Dorta LN de O, Rosa MRR, Zabaglia R, et al. Relação entre treinamento de força e redução do peso corporal. RBPFEX - Revista Brasileira de Prescrição e Fisiologia do Exercício. [Online] 2012;4(24). Available from: http://www.rbpfex.com.br/index.php/rbpfex/article/view/291 [Accessed: 7th March 2018]

Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. The International Journal of Biochemistry & Cell Biology. [Online] 2005;37(10): 1974–1984. Available from: doi:10.1016/j.biocel.2005.04.018

Goldspink G. Gene expression in muscle in response to exercise. Journal of Muscle Research and Cell Motility. 2003;24(2–3): 121–126.

Fernandes T, Soci UPR, Alves CR, Carmo EC do, Barros JG, Oliveira EM de. Determinantes moleculares da hipertrofia do músculo esquelético mediados pelo treinamento físico: estudo de vias de sinalização. Revista Mackenzie de Educação Física e Esporte. [Online] 2009;7(1). Available from: http://editorarevistas.mackenzie.br/index.php/remef/article/view/1238 [Accessed: 7th March 2018]

McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(23): 12457–12461.

Amthor H, Connolly D, Patel K, Brand-Saberi B, Wilkinson DG, Cooke J, et al. The expression and regulation of follistatin and a follistatin-like gene during avian somite compartmentalization and myogenesis. Developmental Biology. [Online] 1996;178(2): 343–362. Available from: doi:10.1006/dbio.1996.0223

Pasqua LA, Artioli GG, Pires O, De F, Bertuzzi R. ACTN3 gene and sports performance: a candidate gene to success in short and long duration events. Revista Brasileira de Cineantropometria & Desempenho Humano. [Online] 2011;13(6): 477–483. Available from: doi:10.5007/1980-0037.2011v13n6p477

Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, Hubal MJ, Urso M, et al. ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. Journal of Applied Physiology (Bethesda, Md.: 1985). [Online] 2005;99(1): 154–163. Available from: doi:10.1152/japplphysiol.01139.2004

Erskine RM, Williams AG, Jones DA, Stewart CE, Degens H. The individual and combined influence of ACE and ACTN3 genotypes on muscle phenotypes before and after strength training. Scandinavian Journal of Medicine & Science in Sports. [Online] 2014;24(4): 642–648. Available from: doi:10.1111/sms.12055

Norman B, Esbjörnsson M, Rundqvist H, Osterlund T, von Walden F, Tesch PA. Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes. Journal of Applied Physiology (Bethesda, Md.: 1985). [Online] 2009;106(3): 959–965. Available from: doi:10.1152/japplphysiol.91435.2008

Vincent B, De Bock K, Ramaekers M, Van den Eede E, Van Leemputte M, Hespel P, et al. ACTN3 (R577X) genotype is associated with fiber type distribution. Physiological Genomics. [Online] 2007;32(1): 58–63. Available from: doi:10.1152/physiolgenomics.00173.2007

Ahmetov II, Donnikov AE, Trofimov DY. Actn3 genotype is associated with testosterone levels of athletes. Biology of Sport. [Online] 2014;31(2): 105–108. Available from: doi:10.5604/20831862.1096046

Gentil P, Pereira RW, Leite TKM, Bottaro M. ACTN3 R577X Polymorphism and Neuromuscular Response to Resistance Training. Journal of Sports Science & Medicine. 2011;10(2): 393–399.

Hogarth MW, Houweling PJ, Thomas KC, Gordish-Dressman H, Bello L, Cooperative International Neuromuscular Research Group (CINRG), et al. Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nature Communications. [Online] 2017;8: 14143. Available from: doi:10.1038/ncomms14143

Lee S-J. Regulation of muscle mass by myostatin. Annual Review of Cell and Developmental Biology. [Online] 2004;20: 61–86. Available from: doi:10.1146/annurev.cellbio.20.012103.135836

Patel K, Amthor H. The function of Myostatin and strategies of Myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscular disorders: NMD. [Online] 2005;15(2): 117–126. Available from: doi:10.1016/j.nmd.2004.10.018

Paoli A, Pacelli QF, Neri M, Toniolo L, Cancellara P, Canato M, et al. Protein supplementation increases postexercise plasma myostatin concentration after 8 weeks of resistance training in young physically active subjects. Journal of Medicinal Food. [Online] 2015;18(1): 137–143. Available from: doi:10.1089/jmf.2014.0004

Bassi D, Bueno P de G, Nonaka KO, Selistre-Araujo HS, Leal AM de O. Exercise alters myostatin protein expression in sedentary and exercised streptozotocin-diabetic rats. Archives of Endocrinology and Metabolism. [Online] 2015;59(2): 148–153. Available from: doi:10.1590/2359-3997000000028

Latres E, Pangilinan J, Miloscio L, Bauerlein R, Na E, Potocky TB, et al. Myostatin blockade with a fully human monoclonal antibody induces muscle hypertrophy and reverses muscle atrophy in young and aged mice. Skeletal Muscle. [Online] 2015;5: 34. Available from: doi:10.1186/s13395-015-0060-8

Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, et al. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS genetics. [Online] 2007;3(5): e79. Available from: doi:10.1371/journal.pgen.0030079

Ruiz JR, Fernández del Valle M, Verde Z, Díez-Vega I, Santiago C, Yvert T, et al. ACTN3 R577X polymorphism does not influence explosive leg muscle power in elite volleyball players. Scandinavian Journal of Medicine & Science in Sports. [Online] 2011;21(6): e34-41. Available from: doi:10.1111/j.1600-0838.2010.01134.x

Montenegro RC, Paz CR, Montenegro Neto AN, Araújo Filho VS, Fernandes PR, Fernandes Filho J. Desempenho anaeróbico e ACTN3 em crianças. Motricidade. [Online] 2013;9(4): 47–53. Available from: doi:10.6063/motricidade.9(4).1135

Norman B, Esbjörnsson M, Rundqvist H, Österlund T, Glenmark B, Jansson E. ACTN3 genotype and modulation of skeletal muscle response to exercise in human subjects. Journal of Applied Physiology (Bethesda, Md.: 1985). [Online] 2014;116(9): 1197–1203. Available from: doi:10.1152/japplphysiol.00557.2013

Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, Kraus WE. Myostatin decreases with aerobic exercise and associates with insulin resistance. Medicine and Science in Sports and Exercise. [Online] 2010;42(11): 2023–2029. Available from: doi:10.1249/MSS.0b013e3181e0b9a8

Matsakas A, Mouisel E, Amthor H, Patel K. Myostatin knockout mice increase oxidative muscle phenotype as an adaptive response to exercise. Journal of Muscle Research and Cell Motility. [Online] 2010;31(2): 111–125. Available from: doi:10.1007/s10974-010-9214-9

Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Medicine and Science in Sports and Exercise. [Online] 2012;44(3): 406–412. Available from: doi:10.1249/MSS.0b013e318233b4bc

Ko IG, Jeong JW, Kim YH, Jee YS, Kim SE, Kim SH, et al. Aerobic exercise affects myostatin expression in aged rat skeletal muscles: a possibility of antiaging effects of aerobic exercise related with pelvic floor muscle and urethral rhabdosphincter. International Neurourology Journal. [Online] 2014;18(2): 77–85. Available from: doi:10.5213/inj.2014.18.2.77

Minderis P, Kilikevicius A, Baltusnikas J, Alhindi Y, Venckunas T, Bunger L, et al. Myostatin dysfunction is associated with reduction in overload induced hypertrophy of soleus muscle in mice. Scandinavian Journal of Medicine & Science in Sports. [Online] 2016;26(8): 894–901. Available from: doi:10.1111/sms.12532

Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, et al. Induction of cachexia in mice by systemically administered myostatin. Science (New York, N.Y.). [Online] 2002;296(5572): 1486–1488. Available from: doi:10.1126/science.106

Acessar